函數(shù)f(x)=
1-x2,x≤1
x2-x-3,x>1
,則f(f(2))的值為(  )
A、-1B、-3C、0D、-8
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應用
分析:利用分段函數(shù)的性質(zhì)求解.
解答: 解:∵函數(shù)f(x)=
1-x2,x≤1
x2-x-3,x>1
,
∴f(2)=4-2-3=-1,
f(f(2))=f(-1)=1-(-1)2=0.
故選:C.
點評:本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在用模擬試驗估算如圖1陰影部分(拋物線y=x2與直線x=1,x軸所圍成的圖形)面積時,利用計算器產(chǎn)生[0,1]上兩個隨機數(shù),得到一個點(x,y),現(xiàn)試驗100次,得到100個點:(x1,y1),(x2,y2) (x3,y3),…,(x100,y100).為了統(tǒng)計落入圖1陰影部分的點的個數(shù),設計如圖所示的程序框圖.
(1)請把圖2中的程序框圖補充完整:
 
,②
 
,③
 

(2)在(1)的基礎上,寫出該程序框圖所對應的程序.
(3)若執(zhí)行該程序后得到S=30,試根據(jù)該結(jié)果估算圖1中陰影部分的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|x2=1},集合N={x|ax=1},若N?M,a的值是(  )
A、1B、-1
C、1或-1D、0,1或-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不共線向量
a
,
b
的夾角為小于120°的角,且|
a
|=1,|
b
|=2,已知向量
c
=
a
+2
b
,求|
c
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
2x,(x≤0)
f(x-1)-f(x-2),(x>0)
,則f(2011)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合U={1,2,3,4,5,6},S={1,4,5},T={5,6},則S∩(∁UT)等于( 。
A、{1,4,5,6}
B、{1,5}
C、{1,4}
D、{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出以下結(jié)論:
(1)圓C:x2+y2+2x-2y-2=0的圓心到直線3x+4y+14=0的距離是2;
(2)若直線(a2+2a)x-y+1=0的傾斜角為鈍角,則實數(shù)a的取值范圍是(-2,0);
(3)直線xtan
π
7
+y=0的傾斜角是
7

(4)直線x+y+1=0與圓x2+y2=
1
2
相切.
其中所有正確結(jié)論的編號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
2x,x<0
2-x,x≥0
 的圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

德國數(shù)學家萊布尼茲發(fā)現(xiàn)了下面的單位分數(shù)三角形(單位分數(shù)是指分子為1,分母為正整數(shù)的分數(shù)),稱為萊布尼茲三角形:根據(jù)前5行的規(guī)律,寫出第6行的數(shù)依次是
 

查看答案和解析>>

同步練習冊答案