分析 當(dāng)直線過原點時斜率存在,設(shè)方程為y=kx,當(dāng)直線不過原點時,設(shè)直線的方程為y=a-x,分別聯(lián)立方程由△=0可得.
解答 解:當(dāng)直線過原點時斜率存在,設(shè)方程為y=kx,
聯(lián)立消去y可得(k2+1)x2-4kx+2=0,
由相切可得△=16k2-8(k2+1)=0,解得k=±1,
∴所求直線的方程為y=±x;
當(dāng)直線不過原點時,設(shè)直線的方程為y=a-x,
聯(lián)立消去x可得2y2-(4+2a)y+a2+2=0,
由相切可得△=(4+2a)2-8(a2+2)=0,解得a=4,
∴所求直線的方程為y=-x+4
綜上可得所求直線的方程為:y=±x或y=-x+4.
故答案為:y=±x或y=-x+4.
點評 本題考查直線與圓的相切關(guān)系,涉及分類討論的思想和一元二次方程的根與判別式的關(guān)系,屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(\frac{π}{2},π)$ | B. | $(\frac{π}{4},\frac{3π}{4})$ | C. | $(π,\frac{3π}{2})$ | D. | $(\frac{3π}{4},\frac{5π}{4})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{4}$ | B. | -$\frac{14}{5}$ | C. | $\frac{16}{5}$ | D. | $\frac{15}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com