11.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC=$\frac{\sqrt{6}}{4}$.
(1)求sinC的值;
(2)當(dāng)a=2,2sinA=sinC時,求b,c的長.

分析 (1)利用同角三角函數(shù)基本關(guān)系式,求解即可.
(2)利用正弦定理求出c,然后利用余弦定理求解b即可.

解答 解:(1)因為cosC=$\frac{\sqrt{6}}{4}$,
得sin2C=1-cos2C=$\frac{10}{16}$,又C∈(0,π),得sinC=$\frac{\sqrt{10}}{4}$.…(4分)
(2)當(dāng)a=2,2sinA=sinC時,
由正弦定理$\frac{a}{sinA}=\frac{c}{sinC}$,得c=4.…(8分)
cosC=$\frac{\sqrt{6}}{4}$,由余弦定理c2=a2+b2-2bccosC,得
b2-$\sqrt{6}$b-12=0,解得b=2$\sqrt{6}$.b=-$\sqrt{6}$(舍去)…(12分)

點評 本題考查三角形的解法,正弦定理以及余弦定理的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)是定義在R上連續(xù)的偶函數(shù),f(x)在[0,+∞)遞增且f(2)=0,則函數(shù)y=|f(1-x)|的單調(diào)遞增區(qū)間為[-1,1]和[3,+∞)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知(x+2)2n=a0+a1(x+1)+a2(x+1)2+…+a2n-1(x+1)2n-1+a2n(x+1)2n,n≥2,n∈N+,則a2+a4+…+a2n-2+a2n=2${\;}^{2n-1}-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若某一射手射擊所得環(huán)數(shù)X的分布列為
X45678910
P0.020.040.060.090.280.290.22
則此射手“射擊一次命中環(huán)數(shù)X≥7”的概率是( 。
A.0.88B.0.12C.0.79D.0.09

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)y=5$\sqrt{2x-1}$+$\sqrt{10-2x}$的最大值為3$\sqrt{26}$,此時x=$\frac{251}{52}$(利用柯西不等式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知定義在R上的函數(shù)f(x)=|x+4|-|x+1|的最大值為a,且g(x)=x2+(a-1)x.
(1)求實數(shù)a的值;
(2)解不等式f(x)+2|x+1|>g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某工廠對某產(chǎn)品的產(chǎn)量與成本的資料分析后有如下數(shù)據(jù):
產(chǎn)量x(千件)2356
成本y(萬元)78912
由表中數(shù)據(jù)得到的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中$\stackrel{∧}$=1.1,預(yù)測當(dāng)產(chǎn)量為9千件時,成本約為(  )萬元.
A.14.5B.13.5C.12.5D.11.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x>-1}\\{y≤1}\\{x-y+1≤0}\end{array}\right.$,則(x-2)2+y2的最小值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.“c≠0”是“方程ax2+y2=c表示橢圓或雙曲線”的必要不充分條件.

查看答案和解析>>

同步練習(xí)冊答案