2.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與直線y=2x無交點,則離心率e的取值范圍是(  )
A.(1,2)B.(1,2]C.(1,$\sqrt{5}$)D.(1,$\sqrt{5}$]

分析 由題意可得,$\frac{a}$≤2,由此能求出離心率e的取值范圍.

解答 解:∵雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與直線y=2x無交點,
∴由題意可得,$\frac{a}$<2,
∴e=$\sqrt{1+(\frac{a})^{2}}$$<\sqrt{5}$,
又∵e>1,∴離心率e的取值范圍是(1,$\sqrt{5}$).
故選:D.

點評 本題考查雙曲線的離心率的取值范圍的求法,是基礎(chǔ)題,解題時要認真審題,注意雙曲線的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在直棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1=1,直線B1C與底面ABC成30°角
(1)求證:A1C1∥截面AB1C;
(2)求點A1到截面AB1C的距離;
(3)設(shè)點E為CC1中點,求異面直線AE與BC1所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某市舉行“職工技能大比武”活動,甲廠派出2男1女共3名職工,乙廠派出2男2女共4名職工.
(1)若從甲廠和乙廠派出的職工中各任選1名進行比賽,求選出的2名職工性別相同的概率;
(2)若從甲廠和乙廠派出的這7名職工中任選2名進行比賽,求選出的2名職工來自同一工廠的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=2cos(ωx+$\frac{π}{6}$)(其中ω>0,x∈R)的最小正周期為10π.
(1)求ω的值;
(2)設(shè)α,β∈[0,$\frac{π}{2}$],f(5α+$\frac{5π}{3}$)=-$\frac{6}{5}$,f(5β-$\frac{5π}{6}$)=$\frac{16}{17}$,求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+ax+2的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在平面直角坐標系xOy中,橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1,過坐標原點的直線交橢圓于P,A兩點,其中點P在第一象限,過P作x軸的垂線,垂足為C,連結(jié)AC,并延長交橢圓于點B,設(shè)直線PA的斜率為k.
(Ⅰ)當(dāng)k=2時,求點P到直線AB的距離d;
(Ⅱ)證明:對任意k,都有PA⊥PB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知四邊形ABCD是矩形,AB=1,AD=2,E,F(xiàn)分別是線段AB,BC的中點,PA⊥平面ABCD.
(1)求證:DF⊥平面PAF;
(2)若∠PBA=45°,求三棱錐C-PFD的體積;
(3)在棱PA上是否存在一點G,使得EG∥平面PFD,若存在,請求出$\frac{AG}{AP}$的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={x|-1≤x<1},B={-1,0,1},則A∩B=(  )
A.{0,1}B.{-1,0}C.{0}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.先后拋擲兩枚均勻的正方體骰子,觀察向上的點數(shù),問:
(1)共有多少種不同的結(jié)果?
(2)所得點數(shù)之和是12的概率是多少?
(3)所得點數(shù)之和是4的倍數(shù)的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案