9.已知函數(shù)f(x)=4x+$\frac{a}{x}$(x>0,a>0)在x=3時(shí)取得最小值,則a=36.

分析 利用基本不等式求出f(x)取得最小值時(shí)x的值即可得出a的值.

解答 解:∵x>0,a>0,
∴f(x)=4x+$\frac{a}{x}$≥2$\sqrt{4x•\frac{a}{x}}$=4$\sqrt{a}$,
當(dāng)且僅當(dāng)4x=$\frac{a}{x}$即x=$\frac{\sqrt{a}}{2}$時(shí)取得等號.
∴$\frac{\sqrt{a}}{2}=3$,解得a=36.
故答案為:36.

點(diǎn)評 本題考查了基本不等式的應(yīng)用與函數(shù)的最值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.過點(diǎn)(3,4)的圓(x-1)2+(y-2)2=8的切線一般式方程是x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知在平面直角坐標(biāo)系xOy中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為F(-$\sqrt{3}$,0),長軸長為4,設(shè)點(diǎn)A(3,4).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若P是橢圓上的動(dòng)點(diǎn),求線段PA中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)=$\left\{\begin{array}{l}2x+3,x∈(-∞,0)\\ 2{x^2}+1,x∈[0,+∞)\end{array}$,則f[f(-1)]的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知直線l1:a2x-y+1=0、l2:x+ay-3=0互相垂直,則a的值為(  )
A.0B.1C.0或1D.0或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知圓錐的頂角120°,母線長為2,則過頂點(diǎn)的截面中,面積最大的截面面積是    2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知x1,x2是函數(shù)f(x)=e-x-|lnx|的兩個(gè)不同零點(diǎn),則x1x2的取值范圍是(  )
A.(0,$\frac{1}{e}$)B.($\frac{1}{e}$,1]C.(1,e)D.($\frac{1}{e}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在區(qū)間[0,4]上隨機(jī)取兩個(gè)實(shí)數(shù)x,y,使得x+2y≤8的概率為( 。
A.$\frac{1}{4}$B.$\frac{3}{16}$C.$\frac{9}{16}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.一款擊鼓小游戲的規(guī)則如下:每盤游戲都需擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得-200分).設(shè)每次擊鼓出現(xiàn)音樂的概率為$\frac{1}{2}$,且各次擊鼓出現(xiàn)音樂相互獨(dú)立.
(1)設(shè)每盤游戲獲得的分?jǐn)?shù)為X,求X的分布列和數(shù)學(xué)期望E(X).
(2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案