【題目】

如圖,長方體ABCDA1B1C1D1的底面ABCD是正方形,點E在棱AA1上,BEEC1.

1)證明:BE⊥平面EB1C1

2)若AE=A1E,求二面角BECC1的正弦值.

【答案】(1)證明見解析;(2)

【解析】

1)利用長方體的性質(zhì),可以知道側面,利用線面垂直的性質(zhì)可以證明出,這樣可以利用線面垂直的判定定理,證明出平面;

2)以點坐標原點,以分別為軸,建立空間直角坐標系,

設正方形的邊長為,,求出相應點的坐標,利用,可以求出之間的關系,分別求出平面、平面的法向量,利用空間向量的數(shù)量積公式求出二面角的余弦值的絕對值,最后利用同角的三角函數(shù)關系,求出二面角的正弦值.

證明(1)因為是長方體,所以側面,而平面,所以

,平面,因此平面

2)以點坐標原點,以分別為軸,建立如下圖所示的空間直角坐標系,

因為,所以

所以,,

是平面的法向量,

所以,

是平面的法向量,

所以,

二面角的余弦值的絕對值為,

所以二面角的正弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右頂點分別為,左焦點為,點為橢圓上任一點,若直線的斜率之積為,且橢圓經(jīng)過點.

(1)求橢圓的方程;

(2)交直線兩點,過左焦點作以為直徑的圓的切線.問切線長是否為定值,若是,請求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 過點,離心率為.

1求橢圓的方程;

2, 是過點且互相垂直的兩條直線,其中交圓 兩點, 交橢圓于另一個點,求面積取得最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場銷售某種品牌的空調(diào)器,每周周初購進一定數(shù)量的空調(diào)器,商場每銷售一臺空調(diào)器可獲利500元,若供大于求,則每臺多余的空調(diào)器需交保管費100元;若供不應求,則可從其他商店調(diào)劑供應,此時每臺空調(diào)器僅獲利潤200元。

若該商場周初購進20臺空調(diào)器,求當周的利潤單位:元關于當周需求量n單位:臺,的函數(shù)解析式;

該商場記錄了去年夏天共10周空調(diào)器需求量n單位:臺,整理得下表:

周需求量n

18

19

20

21

22

頻數(shù)

1

2

3

3

1

以10周記錄的各需求量的頻率作為各需求量發(fā)生的概率,若商場周初購進20臺空調(diào)器,X表示當周的利潤單位:元,求X的分布列及數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,DE分別為BC,AC的中點,AB=BC

求證:(1A1B1∥平面DEC1;

2BEC1E

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩臺機床同時生產(chǎn)一種零件,其質(zhì)量按測試指標劃分:指標大于或等于100為優(yōu)品,大于等于90且小于100為合格品,小于90為次品,現(xiàn)隨機抽取這兩臺機床生產(chǎn)的零件各100件進行檢測,檢測結果統(tǒng)計如下:

測試指標

[8590

[90,95

[95,100

[100,105

[105110

甲機床

8

12

40

32

8

乙機床

7

18

40

29

6

1)試分別估計甲機床、乙機床生產(chǎn)的零件為優(yōu)品的概率;

2)甲機床生產(chǎn)1件零件,若是優(yōu)品可盈利160元,合格品可盈利100元,次品則虧損20元,假設甲機床某天生產(chǎn)50件零件,請估計甲機床該天的利潤(單位:元);

3)從甲、乙機床生產(chǎn)的零件指標在[9095)內(nèi)的零件中,采用分層抽樣的方法抽取5件,從這5件中任意抽取2件進行質(zhì)量分析,求這2件都是乙機床生產(chǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種設備隨著使用年限的增加,每年的維護費相應增加現(xiàn)對一批該設備進行調(diào)查,得到這批設備自購入使用之日起,前五年平均每臺設備每年的維護費用大致如表:

年份

1

2

3

4

5

維護費萬元

y關于t的線性回歸方程;

若該設備的價格是每臺5萬元,甲認為應該使用滿五年換一次設備,而乙則認為應該使用滿十年換一次設備,你認為甲和乙誰更有道理?并說明理由.

參考公式:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點At,1)為函數(shù)yax2+bx+4a,b為常數(shù),且a≠0)與yx圖象的交點.

1)求t

2)若函數(shù)yax2+bx+4的圖象與x軸只有一個交點,求ab;

3)若1≤a≤2,設當x≤2時,函數(shù)yax2+bx+4的最大值為m,最小值為n,求mn的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點Px0,y0)(x0)在橢圓Cab0)上,若點M為橢圓C的右頂點,且POPM O為坐標原點),則橢圓C的離心率e的取值范圍是

A. 0, B. (0,1 C. ,1 D. 0,

查看答案和解析>>

同步練習冊答案