17.六棱柱ABCDEF-A1B1C1D1E1F1的底面是正六邊形,側(cè)棱垂直于底面,且側(cè)棱長等于底面邊長,則直線AE與CB1所成角的余弦值為$\frac{\sqrt{6}}{4}$.

分析 由CB1∥EF1,得∠AEF1是異面直線AE與CB1所成角,由此能求出直線AE與CB1所成角的余弦值.

解答 解:∵CB1∥EF1,∴∠AEF1是異面直線AE與CB1所成角,
設(shè)AB=1,則AF1=EF1=$\sqrt{2}$,
AE2=1+1-2×1×1×cos120°=3,即AE=$\sqrt{3}$,
∴cos∠AEF1=$\frac{A{E}^{2}+E{{F}_{1}}^{2}-A{{F}_{1}}^{2}}{2AE•E{F}_{1}}$=$\frac{3+2-2}{2×\sqrt{3}×\sqrt{2}}$=$\frac{\sqrt{6}}{4}$.
∴直線AE與CB1所成角的余弦值為$\frac{\sqrt{6}}{4}$.
故答案為:$\frac{\sqrt{6}}{4}$.

點評 本題考查異面直線所成角的余弦值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意余弦定理的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.完成某項工作需4個步驟,每一步方法數(shù)相等,完成這項工作共有81種方法,改革后完成這項工作減少了一個步驟,改革后完成這項工作有27種方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=mx+3,g(x)=x2+2x+m.
(I)解不等式f(x)≥g(x);
(Ⅱ)若不等式f(x)+g(x)≥0對任意的x∈(-1,+∞)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求(1+2x-3x25展開式中x5的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知遞增的等差數(shù)列{an}的前n項和為Sn,a2,a4,a8成等比數(shù)列,且Sn-5an的最小值為-20.
(I)求an;
(Ⅱ)設(shè)bn=a1n+$\frac{1}{{S}_{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.△ABC中,A,B,C成等差數(shù)列,a2=b2+c2-$\sqrt{3}$bc,又a,b,c+4成等比數(shù)列.
(1)求A,B,C.
(2)求a,b,c
(3)求△ABC的面積S以及△ABC的外接圓半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.過橢圓$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1的上頂點A作斜率分別為k1,k2(k1,k2>0,k1≠k2)的兩條直線l1,l2,它們分別與橢圓交于另一點M,N.
(1)當(dāng)k1,k2滿足什么條件時,直線MN垂直于x軸;
(2)當(dāng)k1k2=1時,求直線MN的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.二項式($\frac{2}{x}$+x3n的展開式中,第4項的二項式系數(shù)是第3項的二項式系數(shù)的2倍.
(Ⅰ)求n的值,并求所有項的二項式系數(shù)的和;
(Ⅱ)求展開式中的常數(shù)項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(x,4),則x=-2是$\overrightarrow{a}$∥$\overrightarrow$的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案