5.求(1+2x-3x25展開式中x5的系數(shù).

分析 先化簡所給的式子為:(1+2x-3x25=-(x-1)5(3x+1)5 ,再分別利用二項式定理的展開,展開式中x5的系數(shù).

解答 解:∵(1+2x-3x25 =-(x-1)5(3x+1)5
=-(${C}_{5}^{0}$•x5-${C}_{5}^{1}$•x4+${C}_{5}^{2}$•x3-${C}_{5}^{3}$•x2+${C}_{5}^{4}$•x-${C}_{5}^{5}$)•[${C}_{5}^{0}$•(3x)5+${C}_{5}^{1}$•(3x)4+${C}_{5}^{2}$•(3x)3+${C}_{5}^{3}$•(3x)2+${C}_{5}^{4}$•(3x)+${C}_{5}^{5}$]
故(1+2x-3x25展開式里x5的系數(shù)為:-[${C}_{5}^{0}$•${C}_{5}^{5}$-${C}_{5}^{1}$•3${C}_{5}^{4}$+${C}_{5}^{2}$•9${C}_{5}^{3}$-${C}_{5}^{3}$•27${C}_{5}^{2}$+${C}_{5}^{4}$•81${C}_{5}^{1}$-${C}_{5}^{5}$•243${C}_{5}^{0}$]=92.

點(diǎn)評 本題主要考查二項式定理的應(yīng)用,二項式展開式的通項公式,求展開式中某項的系數(shù),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=1,且($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=$\frac{3}{2}$,則向量$\overrightarrow{a}$在向量$\overrightarrow$上的投影為(  )
A.-1B.1C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=cos2x-sin2x+sin2x的周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖所示,在棱長為2的正方體ABCD-A1B1C1D1中,點(diǎn)E、F分別為邊CC1、B1C1的中點(diǎn),點(diǎn)G、H分別在AA1、D1A1上,且滿足AA1=3AG,D1H=2HA1,則異面直線EF、GH所成角的余弦值為$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知四棱錐E-ABCD的底面是邊長為2的菱形,且AE⊥平面CDE,AE=1,CE=$\sqrt{7}$
(Ⅰ)求證:平面ABCD⊥平面ADE;
(Ⅱ)設(shè)點(diǎn)F是棱BC上一點(diǎn),若二面角A-DE-F的余弦值為$\frac{\sqrt{37}}{37}$,試確定點(diǎn)F在BC上的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.比較3(1+x2+x4)和(1+x+x22的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.六棱柱ABCDEF-A1B1C1D1E1F1的底面是正六邊形,側(cè)棱垂直于底面,且側(cè)棱長等于底面邊長,則直線AE與CB1所成角的余弦值為$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1=$\frac{2{a}_{n}}{1+{a}_{n}}$,n∈N
(I)求證:數(shù)列{$\frac{1}{{a}_{n}}$-1}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)令bn=$\frac{n}{{a}_{n}}$,(n∈N),設(shè)數(shù)列{bn}的前n項和為Sn,求證:當(dāng)n≥3時,Sn>$\frac{{n}^{2}}{2}$+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,某森林公園有一直角梯形區(qū)域ABCD,其四條邊均為道路,AD∥BC,∠ADC=90°,AB=5千米,BC=8千米,CD=3千米,現(xiàn)甲、乙兩管理員同時從A地出發(fā)勻速前往D地,甲的路線是AD,速度為6千米/小時,乙的路線是ABCD,速度為v千米/小時.
(1)若甲、乙兩管理員到達(dá)D的時間相差不超過15分鐘.求乙的速度v的取值范圍;
(2)已知對講機(jī)有效通話的最大距離是5千米,若乙先到達(dá)D,且乙從A到D的過程中始終能用對講機(jī)與甲保持有效通話.求乙的速度v的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案