9.已知f(x)=$\frac{a+ln(2x+1)}{2x+1}$.
(Ⅰ)若曲線f(x)在x=0處的切線與直線x-2y-2016=0垂直,求y=f(x)的極值;
(Ⅱ)若關(guān)于t的方程(2x+1)2f′(x)=t3-12t在x$∈[\frac{e-1}{2},\frac{{e}^{2}-1}{2}]$時恒有3個不同的實數(shù)根,試求實數(shù)a的取值范圍.

分析 (Ⅰ)求出f(x)的導(dǎo)數(shù),求得在x=0處切線的斜率,由兩直線垂直的條件:斜率之積為-1,解方程可得a,再由導(dǎo)數(shù)求得單調(diào)區(qū)間,即可得到所求的極值;
(Ⅱ)方程(2x+1)2f′(x)=t3-12t,即為2-2a-2ln(1+2x)=t3-12t,由x的范圍求得左邊的范圍,再由導(dǎo)數(shù)求得右邊函數(shù)的極值,可得-16<-2-2a<-2a<16,解不等式可得所求范圍.

解答 解:(Ⅰ)f(x)=$\frac{a+ln(2x+1)}{2x+1}$的導(dǎo)數(shù)為
f′(x)=$\frac{2-2a-2ln(1+2x)}{(1+2x)^{2}}$,
即有f(x)在x=0處的切線斜率為2-2a,
由切線與直線x-2y-2016=0垂直,可得
2-2a=-2,解得a=2,
即有f(x)=$\frac{2+ln(1+2x)}{2x+1}$,f′(x)=$\frac{-2-2ln(1+2x)}{(1+2x)^{2}}$,
當(dāng)-$\frac{1}{2}$<x<$\frac{1}{2e}$-$\frac{1}{2}$時,f′(x)>0,f(x)遞增;
當(dāng)x>$\frac{1}{2e}$-$\frac{1}{2}$時,f′(x)<0,f(x)遞減.
即有x=$\frac{1}{2e}$-$\frac{1}{2}$處取得極大值,且為e;
(Ⅱ)方程(2x+1)2f′(x)=t3-12t,即為2-2a-2ln(1+2x)=t3-12t,
由x$∈[\frac{e-1}{2},\frac{{e}^{2}-1}{2}]$時,可得2-2a-2ln(1+2x)∈[-2-2a,-2a],
由t3-12t的導(dǎo)數(shù)為3t2-12=3(t+2)(t-2),
可得-2<t<2時,t3-12t遞減;t>2或t<-2時,t3-12t遞增.
即有t=-2處取得極大值,且為16;t=2處取得極小值,且為-16.
關(guān)于t的方程(2x+1)2f′(x)=t3-12t在x$∈[\frac{e-1}{2},\frac{{e}^{2}-1}{2}]$時恒有3個不同的實數(shù)根.
即為2-2a-2ln(1+2x)=t3-12t在t∈R有三個實根,
即有y=t3-12t與y=2-2a-2ln(1+2x)有三個零點.
由題意可得-16<-2-2a<-2a<16,
解得-8<a<7.
則a的取值范圍是(-8,7).

點評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率和單調(diào)區(qū)間、極值和最值,考查函數(shù)方程的轉(zhuǎn)化思想,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知θ是△ABC的一個內(nèi)角,且sinθ+cosθ=$\frac{3}{4}$,則方程x2sinθ-y2cosθ=1表示( 。
A.焦點在x軸上的雙曲線B.焦點在y軸上的雙曲線
C.焦點在x軸上的橢圓D.焦點在y軸上的橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知曲線Cn的方程為:|x|n+|y|n=1(n∈N*).
(Ⅰ)分別求出n=1,n=2時,曲線Cn所圍成的圖形的面積;
(Ⅱ)若Sn(n∈N*)表示曲線Cn所圍成的圖形的面積,求證:Sn(n∈N*)關(guān)于n是遞增的;
(Ⅲ) 若方程xn+yn=zn(n>2,n∈N),xyz≠0,沒有正整數(shù)解,求證:曲線Cn(n>2,n∈N*)上任一點對應(yīng)的坐標(biāo)(x,y),x,y不能全是有理數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.將一張長8cm,寬6cm的長方形的紙片沿著一條直線折疊,如圖1,圖2,不考慮其它情況,折痕(線段)將紙片分成兩部分,面積分別為S1cm2,S2cm2,其中S1≤S2.記折痕長為lcm.
(1)若l=4,求S1的最大值;
(2)若S1:S2=1:3,求l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,平行四邊形ABCD中,AB=2AD=2,∠BAD=60°,E為DC的中點,那么$\overrightarrow{AC}$與$\overrightarrow{EB}$所成角的余弦值為( 。
A.$\frac{\sqrt{7}}{7}$B.-$\frac{\sqrt{7}}{7}$C.$\frac{\sqrt{7}}{14}$D.-$\frac{\sqrt{7}}{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.不等式|x-12|<3的解集為{x|9<x<15}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}滿足:a1=$\frac{1}{2}$,an+1-an=p•3n-1-nq,n∈N*,p,q∈R.
(1)若q=0,且數(shù)列{an}為等比數(shù)列,求p的值;
(2)若p=1,且a4為數(shù)列{an}的最小項,求q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.斜率為2的直線m交雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1與A,B兩點,拋物線y2=2px恰過AB中點M,若M的橫坐標(biāo)為$\frac{p}{2}$,則雙曲線的離心率e═$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知O為坐標(biāo)原點,A,B,C三點的坐標(biāo)分別是(2,-1,2),(4,5,-1),(-2,2,3),求點P坐標(biāo).使:
(1)$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{AB}$-$\overrightarrow{AC}$);
(2)$\overrightarrow{AP}$=$\frac{1}{2}$($\overrightarrow{AB}$-$\overrightarrow{AC}$)

查看答案和解析>>

同步練習(xí)冊答案