6.函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則f(0)的值是-$\sqrt{3}$.

分析 根據(jù)函數(shù)在同一周期內(nèi)的最大值、最小值對應的x值,求出函數(shù)的周期T=$\frac{2π}{ω}$=π,解得ω=2.由函數(shù)當x=$\frac{5π}{12}$時取得最大值2,得到$\frac{5π}{6}$+φ=$\frac{π}{2}$+kπ(k∈Z),取k=0得到φ=-$\frac{π}{3}$.求得函數(shù)解析式,代入即可得到本題的答案.

解答 解:∵在同一周期內(nèi),函數(shù)在x=$\frac{5π}{12}$時取得最大值,x=$\frac{11π}{12}$時取得最小值,
∴函數(shù)的周期T滿足$\frac{T}{2}$=$\frac{11π}{12}$-$\frac{5π}{12}$=$\frac{π}{2}$,
由此可得T=$\frac{2π}{ω}$=π,解得ω=2,
得函數(shù)表達式為f(x)=2sin(2x+φ),
又∵當x=$\frac{5π}{12}$時取得最大值2,
∴2sin(2•$\frac{5π}{12}$+φ)=2,可得$\frac{5π}{6}$+φ=$\frac{π}{2}$+2kπ(k∈Z),
∵-$\frac{π}{2}$<φ<$\frac{π}{2}$,∴取k=0,得φ=-$\frac{π}{3}$.
∴可得f(x)=2sin(2x-$\frac{π}{3}$),f(0)=2sin(-$\frac{π}{3}$)=-$\sqrt{3}$.
故答案為:-$\sqrt{3}$.

點評 本題給出y=Asin(ωx+φ)的部分圖象,求函數(shù)的表達式.著重考查了三角函數(shù)的圖象與性質(zhì)、函數(shù)y=Asin(ωx+φ)的圖象變換等知識,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=log2(x+1),g(x)=log2$\frac{1}{1-x}$,記F(x)=2f(x)+g(x)
(Ⅰ)求函數(shù)F(x)的定義域D及其零點;
(Ⅱ)若關于x的方程F(x)-log2m=0在區(qū)間[0,1)內(nèi)有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.觀察式子:$1+\frac{1}{{2}^{2}}<\frac{3}{2}$,$1+\frac{1}{2^2}+\frac{1}{3^2}<\frac{5}{3}$,$1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}<\frac{7}{4}$,…,則可歸納出第n個式子為1+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知奇函數(shù)f(x)的定義域為R,若f(x+1)為偶函數(shù),且f(1)=1,則f(2016)+f(2015)=( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知某幾何體的俯視圖是如圖所示的邊長為2的正方形,正視圖與側視圖是邊長為2的正三角形,則該幾何體的體積是$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知f(lgx)=$\frac{1}{x}$,則f(1)=$\frac{1}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)f(x)=ln(2-x)的定義域是(-∞,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.將函數(shù)f(x)=sin2x的圖象向左平移$\frac{π}{12}$個單位,得到函數(shù)g(x)=sin(2x+φ)(0<φ<$\frac{π}{2}$)的圖象,則φ等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在△ABC中,$AC=\sqrt{7}$,B=60°,BC邊上的高$h=\frac{{3\sqrt{3}}}{2}$,則BC=1或2.

查看答案和解析>>

同步練習冊答案