16.函數(shù)f(x)=$\left\{\begin{array}{l}2x,0≤x≤1\\ 1,1<x<2\\ 3,x≥2\end{array}$的值域是( 。
A.RB.[0,2]∪{3}C.[0,+∞)D.[-3,3]

分析 0≤x≤1時求出2x的范圍,從而可以得出f(x)的范圍,即得出該函數(shù)的值域.

解答 解:0≤x≤1時,0≤2x≤2;
∴0≤f(x)≤2或f(x)=3;
∴f(x)的值域為[0,2]∪{3}.
故選:B.

點(diǎn)評 考查函數(shù)值域的概念,分段函數(shù)值域的求法,以及根據(jù)不等式的性質(zhì)求值域.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.當(dāng)a=2時,如圖所示的程序段輸出的結(jié)果是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.容量為20的樣本數(shù)據(jù),分組后的頻數(shù)如下表:
分組[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)
頻數(shù)234542
則樣本數(shù)據(jù)落在區(qū)間[40,70)的頻率為( 。
A.0.35B.0.45C.0.55D.0.65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示,在長方體ABCD-A1B1C1D1中,AB=BC=1,BB1=2,E是棱CC1上的點(diǎn),且$CE=\frac{1}{4}C{C_1}$.     
(1)求三棱錐C-BED的體積;
(2)求直線CC1與平面BDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知全集U=R,A={x|-2<x<2},B={x|x<-1或x>4},
(1)求A∩B
(2)求∁UB
(3)A∪(∁UB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知某幾何體的俯視圖是如圖所示的邊長為2的正方形,正視圖與側(cè)視圖是邊長為2的正三角形,則該幾何體的體積是$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知等邊△ABC邊長為4,動點(diǎn)P滿足PA2+PB2=12,則線段PC長度的取值范圍是[$2\sqrt{3}-\sqrt{2}$,$2\sqrt{3}+\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x≥0}\\{y≥x}\\{2x+y-6≥0}\end{array}\right.$,則z=x-2y的最大值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖|$\overrightarrow{OA}|=|\overrightarrow{OB}$|=1,$\overrightarrow{OA}$與$\overrightarrow{OB}$的夾角為120°,$\overrightarrow{OC}$與$\overrightarrow{OA}$的夾角為30°,|$\overrightarrow{OC}$|=5,則$\overrightarrow{OC}$=$\frac{10\sqrt{3}}{3}$$\overrightarrow{OA}$+$\frac{5\sqrt{3}}{3}$$\overrightarrow{OB}$.(用$\overrightarrow{OA}和\overrightarrow{OB}$表示)

查看答案和解析>>

同步練習(xí)冊答案