7.已知正項(xiàng)等差數(shù)列{an}滿足a1+a2017=2,則$\frac{1}{a_2}+\frac{1}{{{a_{2016}}}}$的最小值為( 。
A.1B.2C.2016D.2018

分析 正項(xiàng)等差數(shù)列{an}滿足a1+a2017=2,可得a2+a2016=a1+a2017=2,化簡(jiǎn)利用基本不等式的性質(zhì)即可得出.

解答 解:∵正項(xiàng)等差數(shù)列{an}滿足a1+a2017=2,
∴a2+a2016=a1+a2017=2,
則$\frac{1}{a_2}+\frac{1}{{{a_{2016}}}}$=$\frac{{a}_{2}+{a}_{2016}}{{a}_{2}{a}_{2016}}$=$\frac{2}{{a}_{2}{a}_{2016}}$≥$\frac{2}{(\frac{{a}_{1}+{a}_{2017}}{2})^{2}}$=2,當(dāng)且僅當(dāng)a1=a2017時(shí)取等號(hào).
故選:B.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式性質(zhì)、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點(diǎn)到直線x-y+3$\sqrt{2}$=0的距離為5,且橢圓的一個(gè)長軸端點(diǎn)與一個(gè)短軸端點(diǎn)間的距離為$\sqrt{10}$.
(1)求橢圓C的方程;
(2)如圖,連接橢圓短軸端點(diǎn)A與橢圓上不同于A的兩點(diǎn)M,N,與以橢圓短軸為直徑的圓分別交于P,Q兩點(diǎn),且PQ恰好經(jīng)過圓心O,求△AMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$在單位正方形網(wǎng)格中的位置如圖所示,則$\overrightarrow{a}$•($\overrightarrow$+$\overrightarrow{c}$)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.下面幾個(gè)數(shù)中:①30.4;②$\frac{1+tan15°}{1-tan15°}$;③log23•log98;④50.2;⑤3${\;}^{\frac{1}{3}}$,最大的是②,最小的是④(請(qǐng)?zhí)顚憣?duì)應(yīng)數(shù)的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某次知識(shí)競(jìng)賽中,四個(gè)參賽小隊(duì)的初始積分都是100分,在答題過程中,各小組每答對(duì)1題都可以使自己小隊(duì)的積分增加5分,若答題過程中四個(gè)小隊(duì)答對(duì)的題數(shù)分別是4道,7道,7道,2道,則四個(gè)小組積分的方差為( 。
A.50B.75.5C.112.5D.225

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=x2-2,對(duì)?x1∈[1,2],?x2∈[3,4],若f(x2)+a≥|f(x1)|恒成立,則實(shí)數(shù)a的取值范圍是[-12,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖所示,在一個(gè)坡度一定的山坡AC的頂上有一高度為25m的建筑物CD,為了測(cè)量該山坡相對(duì)于水平地面的坡角θ,在山坡的A處測(cè)得∠DAC=15°,沿山坡前進(jìn)50m到達(dá)B處,又測(cè)得∠DBC=45°,根據(jù)以上數(shù)據(jù)可得cosθ=$\sqrt{3}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若a,b都是不等于1的正數(shù),則“l(fā)oga2>logb2”是“2a>2b”的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示,在四邊形ABCD中,cosB=$\frac{\sqrt{3}}{3}$,∠D=2∠B,AD=1,且△ACD的面積為$\sqrt{2}$
(1)求CD的長度;
(2)若BC=2$\sqrt{3}$,求AB的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案