15.下面幾個數(shù)中:①30.4;②$\frac{1+tan15°}{1-tan15°}$;③log23•log98;④50.2;⑤3${\;}^{\frac{1}{3}}$,最大的是②,最小的是④(請?zhí)顚憣?yīng)數(shù)的序號)

分析 利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性、結(jié)合冪的運(yùn)算法則,即可得出結(jié)論.

解答 解:①30.4=${3}^{\frac{2}{5}}$>${3}^{\frac{1}{3}}$,且${3}^{\frac{2}{5}}$<${3}^{\frac{1}{2}}$,
②$\frac{1+tan15°}{1-tan15°}$=tan(45°+15°)=$\sqrt{3}$=${3}^{\frac{1}{2}}$,
③log23•log98=$\frac{lg3}{lg2}$•$\frac{3lg2}{2lg3}$=$\frac{3}{2}$,
④50.2=${5}^{\frac{1}{5}}$
⑤3${\;}^{\frac{1}{3}}$,
∴最大的是②,最小的是④.
故答案為:②,④.

點(diǎn)評 本題考查了函數(shù)的性質(zhì)與應(yīng)用問題,也考查了推理與計算能力的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知F1,F(xiàn)2是橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左右焦點(diǎn),點(diǎn)A(1,$\frac{3}{2}$),則∠F1AF2的角平分線l所在直線的斜率為2.′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=ln($\frac{1}{x}$-1)的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,0)B.(0,1)C.(1,+∞)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.集合A={x|x2-3x<0},集合B={x||x|<2},則A∪B=(-2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=$\frac{3x+1}{x+a}$(a$≠\frac{1}{3}$)圖象與它的反函數(shù)圖象重合,則實(shí)數(shù)a=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在平面直角坐標(biāo)系中,已知A(cosα,sinα),B(cosβ,sinβ),P(cosγ,sinγ)α,β,γ∈[0,2π),α≠β≠γ,設(shè)f(x)=|$\overrightarrow{BP}$-x$\overrightarrow{BA}$|(x∈R)的最小值為M(γ),若M(γ)的最大值為$\frac{5}{4}$,則|$\overrightarrow{AB}$|的值等于$\frac{\sqrt{15}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知正項等差數(shù)列{an}滿足a1+a2017=2,則$\frac{1}{a_2}+\frac{1}{{{a_{2016}}}}$的最小值為( 。
A.1B.2C.2016D.2018

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知向量$\overrightarrow{a}$=(-2,1),$\overrightarrow$=(1,0),則|2$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.化簡:$\frac{1+cos2x}{tan\frac{x}{2}-cot\frac{x}{2}}$.

查看答案和解析>>

同步練習(xí)冊答案