年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
在直角坐標(biāo)版權(quán)法呂,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,的極坐標(biāo)方程為.
(I)寫出的直角坐標(biāo)方程;
(II)為直線上一動點(diǎn),當(dāng)到圓心的距離最小時,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,已知直線的參數(shù)方程為: (t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2cosθ.直線與圓相交于A,B兩點(diǎn),求線段AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,和相交于A,B兩點(diǎn),過A作兩圓的切線分別交兩圓于兩點(diǎn),連結(jié)并延長交于點(diǎn).
證明:(I);
(II).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)
(1)若a=1,解不等式;
(2)若函數(shù)有最小值,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)對于任意正實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)是否存在最小的正常數(shù),使得:當(dāng)時,對于任意正實(shí)數(shù),不等式恒成立?給出你的結(jié)論,并說明結(jié)論的合理性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com