【題目】箱子中有形狀、大小都相同的3只紅球,2只白球,從中一次摸出2只球.
(1)求摸到的2只球顏色不同的概率:
(2)求摸到的2只球中至少有1只紅球的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5].
(1)當(dāng)a=﹣1時,求函數(shù)f(x)的最大值和最小值;
(2)記函數(shù)f(x)的最小值為g(a),求g(a)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),離心率等于,它的一個短軸端點(diǎn)恰好是拋物線的焦點(diǎn).
(1)求橢圓的方程;
(2)已知、是橢圓上的兩點(diǎn),是橢圓上位于直線兩側(cè)的動點(diǎn).
①若直線的斜率為,求四邊形面積的最大值;
②當(dāng)運(yùn)動時,滿足,試問直線的斜率是否為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a為正實數(shù).如圖,一個水輪的半徑為a m,水輪圓心 O 距離水面,已知水輪每分鐘逆時針轉(zhuǎn)動 5 圈.當(dāng)水輪上的點(diǎn) P 從水中浮現(xiàn)時(即圖中點(diǎn))開始計算時間.
(1)將點(diǎn) P 距離水面的高度 h(m )表示為時間 t(s)的函數(shù);
(2)點(diǎn) P 第一次達(dá)到最高點(diǎn)需要多少時間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l1:kx-y+4=0與直線l2:x+ky-3=0相交于點(diǎn)P,則當(dāng)實數(shù)k變化時,點(diǎn)P到直線4x-3y+10=0的距離的最大值為( )
A.2B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,以短軸端點(diǎn)和焦點(diǎn)為頂點(diǎn)的四邊形的周長為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程及焦點(diǎn)坐標(biāo).
(Ⅱ)過橢圓的右焦點(diǎn)作軸的垂線,交橢圓于、兩點(diǎn),過橢圓上不同于點(diǎn)、的任意一點(diǎn),作直線、分別交軸于、兩點(diǎn).證明:點(diǎn)、的橫坐標(biāo)之積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若無窮數(shù)列滿足:是正實數(shù),當(dāng)時,,則稱是“-數(shù)列”.已知數(shù)列是“-數(shù)列”.
(Ⅰ)若,寫出的所有可能值;
(Ⅱ)證明:是等差數(shù)列當(dāng)且僅當(dāng)單調(diào)遞減;
(Ⅲ)若存在正整數(shù),對任意正整數(shù),都有,證明:是數(shù)列的最大項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,平面ABCD⊥平面ABE,F為CE的中點(diǎn),且AE⊥BE.
(1)求證:AE∥平面BFD:
(2)求證:BF⊥AE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量(cosx+sinx,1),(sinx,),函數(shù).
(1)若f(θ)=3且θ∈(0,π),求θ;
(2)求函數(shù)f(x)的最小正周期T及單調(diào)遞增區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com