【題目】若無窮數(shù)列滿足:是正實(shí)數(shù),當(dāng)時(shí),,則稱是“-數(shù)列”.已知數(shù)列是“-數(shù)列”.

(Ⅰ)若,寫出的所有可能值;

(Ⅱ)證明:是等差數(shù)列當(dāng)且僅當(dāng)單調(diào)遞減;

(Ⅲ)若存在正整數(shù),對(duì)任意正整數(shù),都有,證明:是數(shù)列的最大項(xiàng).

【答案】(1)-2,0,2,8.(2)見解析(3)見解析

【解析】分析:(利用遞推關(guān)系,根據(jù)分類討論思想求解即可;(當(dāng)是等差數(shù)列時(shí),利用反證法可證明單調(diào)遞減,單調(diào)遞減當(dāng)單調(diào)遞減時(shí),對(duì)任意,.,所以,從而是等差數(shù)列;(利用反證法:假設(shè)不是數(shù)列的最大項(xiàng),設(shè)是使得的最小正整數(shù),可得的倍數(shù),,故不是的倍數(shù),相矛盾,從而可得結(jié)論.

詳解(Ⅰ) -2,0,2,8.

(Ⅱ)證明:因?yàn)?/span>,所以.

當(dāng)是等差數(shù)列時(shí),假設(shè),則.此時(shí),,而,矛盾!所以.于是公差,所以單調(diào)遞減.

當(dāng)單調(diào)遞減時(shí),對(duì)任意,.又,所以,從而是等差數(shù)列.

(Ⅲ)證明:假設(shè)不是數(shù)列的最大項(xiàng),設(shè)是使得的最小正整數(shù),則

,

因此,的倍數(shù).

假設(shè),,…,都是的倍數(shù),則

,

因此,也是的倍數(shù).

由第二數(shù)學(xué)歸納法可知,對(duì)任意,都是的倍數(shù).

又存在正整數(shù),對(duì)任意正整數(shù),都有,

所以,存在正整數(shù),,因而的倍數(shù).

,故不是的倍數(shù),矛盾!

所以,是數(shù)列的最大項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是ABBB1的中點(diǎn).

)證明: BC1//平面A1CD;

)設(shè)AA1= AC=CB=2,AB=2,求三棱錐CA1DE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.

(1) 經(jīng)計(jì)算估計(jì)這組數(shù)據(jù)的中位數(shù);

(2)現(xiàn)按分層抽樣從質(zhì)量為的芒果中隨機(jī)抽取個(gè),再?gòu)倪@個(gè)中隨機(jī)抽取個(gè),求這個(gè)芒果中恰有個(gè)在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】箱子中有形狀、大小都相同的3只紅球,2只白球,從中一次摸出2只球.

1)求摸到的2只球顏色不同的概率:

2)求摸到的2只球中至少有1只紅球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在點(diǎn)處的切線斜率為負(fù)值.

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若有兩個(gè)極值點(diǎn),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}滿足

(1)若,求證:存在a,bc為常數(shù)),使數(shù)列是等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;

(2)若an 是一個(gè)等差數(shù)列{bn}的前n項(xiàng)和,求首項(xiàng)a1的值與數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在四棱錐中,平面,是邊長(zhǎng)為2的等邊三角形,,的中點(diǎn).

1)求證:

2)若直線與平面所成角的正切值為2,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的個(gè)數(shù)為(

①兩個(gè)有共同始點(diǎn)且相等的向量,其終點(diǎn)可能不同;

②若非零向量共線,則、、四點(diǎn)共線;

③若非零向量共線,則;

④四邊形是平行四邊形,則必有;

,則方向相同或相反.

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次漢馬(武漢馬拉松比賽的簡(jiǎn)稱)全程比賽中,50名參賽選手(24名男選手和26名女選手)的成績(jī)(單位:分鐘)分別為數(shù)據(jù) (成績(jī)不為0).

24名男選手成績(jī)的莖葉圖如圖⑴所示,若將男選手成績(jī)由好到差編為124號(hào),再用系統(tǒng)抽樣方法從中抽取6人,求其中成績(jī)?cè)趨^(qū)間上的選手人數(shù);

Ⅱ)如圖⑵所示的程序用來對(duì)這50名選手的成績(jī)進(jìn)行統(tǒng)計(jì).為了便于區(qū)別性別,輸入時(shí),男選手的成績(jī)數(shù)據(jù)用正數(shù),女選手的成績(jī)數(shù)據(jù)用其相反數(shù)(負(fù)數(shù)),請(qǐng)完成圖⑵中空白的判斷框①處的填寫,并說明輸出數(shù)值的統(tǒng)計(jì)意義.

查看答案和解析>>

同步練習(xí)冊(cè)答案