A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 由已知利用橢圓性質(zhì)推導(dǎo)出$\frac{\frac{^{2}}{a}+2c-(2a-\frac{^{2}}{a})}{2}$=$\frac{\sqrt{{a}^{2}-^{2}}}{2}$,由此能求出橢圓C的離心率.
解答 解:∵橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩焦點(diǎn)為F1,F(xiàn)2,P為橢圓C上一點(diǎn),且PF2⊥x軸,
∴|F1F2|=2c,|PF2|=$\frac{^{2}}{a}$,|PF1|=$2a-\frac{^{2}}{a}$,
∵△PF1F2的內(nèi)切圓半徑r=$\frac{\sqrt{{a}^{2}-^{2}}}{2}$,
∴$\frac{\frac{^{2}}{a}+2c-(2a-\frac{^{2}}{a})}{2}$=$\frac{\sqrt{{a}^{2}-^{2}}}{2}$,
整理,得a=2c,
∴橢圓C的離心率為e=$\frac{c}{a}=\frac{1}{2}$.
故選:B.
點(diǎn)評(píng) 本題考查橢圓的離心率的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意橢圓性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{11}{25}$+$\frac{2}{25}$i | B. | -$\frac{11}{25}$-$\frac{2}{25}$i | C. | -$\frac{11}{25}$+$\frac{2}{25}$i | D. | $\frac{11}{25}$-$\frac{2}{25}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{3}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{4}$ | D. | -$\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$-1 | B. | $\sqrt{3}$+1 | C. | 2$\sqrt{3}$+2 | D. | 2$\sqrt{3}$-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com