17.如圖,在邊長為1的正方形中隨機(jī)撒1000粒豆子,有380粒落到陰影部分,據(jù)此估計陰影部分的面積為0.38.

分析 根據(jù)幾何槪型的概率意義,即可得到結(jié)論.

解答 解:正方形的面積S=1,設(shè)陰影部分的面積為S,
∵隨機(jī)撒1000粒豆子,有380粒落到陰影部分,
∴由幾何槪型的概率公式進(jìn)行估計得$\frac{S}{1}=\frac{380}{1000}$,
即S=0.38,
故答案為:0.38.

點評 本題主要考查幾何槪型的概率的計算,利用豆子之間的關(guān)系建立比例關(guān)系是解決本題的關(guān)鍵,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖所示,雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,M,N為雙曲線C上兩點,且kMN=0,若$\overrightarrow{{F}_{1}Q}$=$\overrightarrow{QN}$(Q在雙曲線C上),且|MN|=$\frac{{|F}_{1}{F}_{2}|}{4}$,則雙曲線C的漸近線方程為( 。
A.y=$±\sqrt{2}$xB.y=$±\sqrt{3}$xC.y=±2xD.y=$±\sqrt{5}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.過已知點A(1,3)的直線l與x軸、y軸分別交于P、Q兩點,求使|AP|•|AQ|最小的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=b•ax(其中a,b為常數(shù),且a>0,a≠1)的圖象經(jīng)過點A(1,6),B(3,24)
(1)求f(x)的表達(dá)式;
(2)若不等式ax+bx-m(ab)x≥0在x∈(-∞,1]時恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知數(shù)列{an}滿足:a1=2,且對任意n,m∈N*,都有am+n=am•an,Sn是數(shù)列{an}的前n項和,則$\frac{S_4}{S_2}$=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.用拋擲1枚一角硬幣和1枚五分硬幣來模擬孟德爾的豌豆實驗,設(shè)2枚硬幣的正面對應(yīng)DD,一角硬幣的正面與五分硬幣的反面對應(yīng)Dd,一角硬幣的反面與五分硬幣的正面對應(yīng)dD,2枚硬幣的反面對應(yīng)dd,拋擲這2枚硬幣100次,記下出現(xiàn)DD,Dd,dD和dd的次數(shù),考察你的結(jié)果是否基本符合1:1:1:1的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在數(shù)列{an}中,前n項和為Sn,且${S_n}=\frac{n(n+1)}{2}$.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)${b_n}=\frac{a_n}{2^n}$,求數(shù)列{bn}的前項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)數(shù)列{an}的前n項和為Sn,且2Sn=3an-1(n∈N*).
(1)求a1,a2及數(shù)列{an]的通項公式;
(2)已知數(shù)列{bn}滿足bn=log3a2n,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在正項等比數(shù)列{an}中,a1a3=1,a2+a3=$\frac{4}{3}$,則$\lim_{n→∞}$(a1+a2+…+an)=$\frac{9}{2}$.

查看答案和解析>>

同步練習(xí)冊答案