2.如圖,是一個算法程序,則輸出的n的值為4.

分析 由已知中的程序語句可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量n的值,模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:當(dāng)m=1時,不滿足退出循環(huán)的條件,執(zhí)行循環(huán)體后,m=2,n=1,
當(dāng)m=2時,不滿足退出循環(huán)的條件,執(zhí)行循環(huán)體后,m=5,n=2,
當(dāng)m=5時,不滿足退出循環(huán)的條件,執(zhí)行循環(huán)體后,m=34,n=3,
當(dāng)m=34時,不滿足退出循環(huán)的條件,執(zhí)行循環(huán)體后,m=234+3,n=4,
當(dāng)m=234+3時,滿足退出循環(huán)的條件,
故輸出的n的值為4,
故答案為:4.

點評 本題考查了程序框圖的應(yīng)用問題,解題時應(yīng)模擬程序框圖的運(yùn)行過程,以便得出正確的結(jié)論,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知F為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點,定點A為雙曲線虛軸的一個頂點,過F,A的直線與雙曲線的一條漸近線在y軸左側(cè)的交點為B,若$\overrightarrow{FA}$=($\sqrt{2}$-1)$\overrightarrow{AB}$,則此雙曲線的離心率是( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知全集I={1,2,4,6,7,9},其中M={2,4,7,9},P={1,4,7,9},則(∁IM)∩P=( 。
A.{1,4,6}B.{1,6}C.{1}D.{6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量$\overrightarrow{a}$=(3,1),$\overrightarrow$=(sinα,cosα),且$\overrightarrow{a}$∥$\overrightarrow$,則tan2α=( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,角A,B,C的對邊分別為a,b,c,滿足acosB+$\frac{1}{2}$b=c.
(Ⅰ) 求角A;
(Ⅱ) 若b,a,c成等比數(shù)列,求證:△ABC為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,是一個幾何體的三視圖,其中主視圖、左視圖是直角邊長為2的等腰直角三角形,俯視圖為邊長為2的正方形,則此幾何體的表面積為( 。
A.8+4$\sqrt{2}$B.8+4$\sqrt{3}$C.$6+6\sqrt{2}$D.8+2$\sqrt{2}$+2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一個幾何體的三視圖如圖所示,則這個幾何體的外接球的表面積為 ( 。
A.$\frac{4π}{3}$B.$\frac{8π}{3}$C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,$\overrightarrow{AC}•\overrightarrow{BC}=0$,點M在BC邊上,且滿足$\overrightarrow{BM}=2\overrightarrow{MC}$,則cos∠MAB的最小值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知球的半徑為r,求球的內(nèi)接正四面體的棱長$\frac{2\sqrt{6}}{3}$r.

查看答案和解析>>

同步練習(xí)冊答案