【題目】已知(為自然對(duì)數(shù)的底數(shù), ).
(1)設(shè)為的導(dǎo)函數(shù),證明:當(dāng)時(shí), 的最小值小于0;
(2)若恒成立,求符合條件的最小整數(shù)
【答案】(1)詳見(jiàn)解析;(2) .
【解析】試題分析: (1)構(gòu)造函數(shù),則, 令求導(dǎo)判斷單調(diào)性得出最值,即可證得成立; (2) 恒成立,等價(jià)于恒成立.令,求導(dǎo)判斷單調(diào)性, 求出g(x)的零點(diǎn)所在區(qū)間,得到f(x)的單調(diào)區(qū)間和最小值,所以恒成立,且 再由參數(shù)分離和構(gòu)造函數(shù)法,即可得到b的范圍,進(jìn)而得到最小整數(shù)b.
試題解析:
(1)【證明】令,則
因?yàn)?/span>,令,則.
所以當(dāng)時(shí), 單調(diào)遞減;
當(dāng)時(shí), 單調(diào)遞增.
則
令
當(dāng)時(shí), 單調(diào)遞增;當(dāng)時(shí), 單調(diào)遞減.
所以,所以成立.
(2)【解】恒成立,等價(jià)于恒成立.令,
則 因?yàn)?/span>,所以,所以單調(diào)遞增.
又,所以存在,使得.
則時(shí), 單調(diào)遞減;
時(shí), 單調(diào)遞增.
所以恒成立. ①且②
由①②得恒成立.
又由②得,所以
,所以,所以單調(diào)遞增, ,
所以,所以符合條件的最小整數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 的部分圖象如圖所示,則下列結(jié)論錯(cuò)誤的是( )
A.
B.函數(shù)f(x)在 上單調(diào)遞增
C.函數(shù)f(x)的一條對(duì)稱(chēng)軸是
D.為了得到函數(shù)f(x)的圖象,只需將函數(shù)y=2cosx的圖象向右平移 個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)y=sin(x﹣ )的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將所得圖象向左平移 個(gè)單位,則所得函數(shù)圖象對(duì)應(yīng)的解析式為( )
A.y=sin( x﹣ )
B.y=sin(2x﹣ )
C.y=sin x
D.y=sin( x﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以O(shè)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ,直線l的參數(shù)方程為: (t為參數(shù)),兩曲線相交于M,N兩點(diǎn).
(1)寫(xiě)出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若P(﹣2,﹣4),求|PM|+|PN|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=4sin2( + )sinx+(cosx+sinx)(cosx﹣sinx)﹣1.
(1)化簡(jiǎn)f(x);
(2)常數(shù)ω>0,若函數(shù)y=f(ωx)在區(qū)間 上是增函數(shù),求ω的取值范圍;
(3)若函數(shù)g(x)= 在 的最大值為2,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)的定義域和值域均為,求實(shí)數(shù)的值;
(2)若在區(qū)間上是減函數(shù),且對(duì)任意的,總有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)= ,若f(0)是f(x)的最小值,則a的取值范圍為( )
A.[﹣1,2]
B.[﹣1,0]
C.[1,2]
D.[0,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=﹣2x , g(x)=lg(ax2﹣2x+1),若對(duì)任意x1∈R,都存在x2∈R,使f(x1)=g(x2),則實(shí)數(shù)a的取值范圍為( )
A.(﹣1,0)
B.(0,1)
C.(﹣∞,1]
D.[1,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com