13.已知實(shí)數(shù)x,y滿(mǎn)足$\left\{\begin{array}{l}{(x-y+6)(x+y-6)≥0}\\{1≤x≤4}\end{array}\right.$
(1)求x2+y2-2的取值范圍;
(2)求$\frac{y}{x-3}$的取值范圍.

分析 (1)利用兩點(diǎn)間的距離公式的幾何意義進(jìn)行求解.
(2)利用斜率的公式進(jìn)行求解.

解答 解:(1)作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
設(shè)z=x2+y2-2,d=$\sqrt{{x}^{2}+{y}^{2}}$
則z的幾何意義為區(qū)域內(nèi)的點(diǎn)到原點(diǎn)距離的平方減2,即z=d2-2.
由圖象知OB的距離最大,點(diǎn)O到直線x+y-6=0的距離OD最小,
由$\left\{\begin{array}{l}{x=4}\\{x-y+6=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=10}\end{array}\right.$,此時(shí)z=42+102-2=114.
點(diǎn)O到直線x+y-6=0的距離OD=$\frac{|-6|}{\sqrt{2}}=3\sqrt{2}$,
此時(shí)z=d2-2=(3$\sqrt{2}$)2-2=18-2=16,
故16≤z≤114,
故x2+y2-2的取值范圍是[16,114].
(2)設(shè)k=$\frac{y}{x-3}$,則k的幾何意義是區(qū)域內(nèi)的點(diǎn)到定點(diǎn)P(3,0)的斜率,
由$\left\{\begin{array}{l}{x=1}\\{x+y-6=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=5}\end{array}\right.$,即A(1,5),
由$\left\{\begin{array}{l}{x=4}\\{x+y-6=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=4}\\{y=2}\end{array}\right.$,即C(4,2),
則PC的斜率k=$\frac{2}{4-3}=2$,PA的斜率k=$\frac{5}{1-3}$=$-\frac{5}{2}$,
則k≥2或k≤$-\frac{5}{2}$

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合以及兩點(diǎn)間的距離公式以及直線的斜率公式是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知等差數(shù)列中,首項(xiàng)a1=21,公差d=-4,求|a1|+|a2|+…|ak|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在橢圓$\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{9}$=1內(nèi),通過(guò)點(diǎn)M(1,1)且被這點(diǎn)平分的弦所在的直線方程為(  )
A.9x-16y+7=0B.16x+9y-25=0C.9x+16y-25=0D.16x-9y-7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知拋物線y2=4x的準(zhǔn)線與雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a>0,b>0)的兩條漸近線分別交于A,B兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn)若雙曲線的離心率為2,則三角形AOB的面積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知向量$\overrightarrow{a}$=($\sqrt{3}$,-1),$\overrightarrow$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)
(1)求證:$\overrightarrow{a}$⊥$\overrightarrow$;
(2)是否存在不為0的實(shí)數(shù)k和t,使$\overrightarrow{x}$=$\overrightarrow{a}$+(t2-3)$\overrightarrow$,$\overrightarrow{y}$=-k$\overrightarrow{a}$+t$\overrightarrow$,且$\overrightarrow{x}$⊥$\overrightarrow{y}$?如果存在,試確定k與t的關(guān)系,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知直線l:y=ax+b與曲線F:x=$\frac{1}{y}$+y沒(méi)有公共點(diǎn),若平行于l的直線與曲線F有且只有一個(gè)公共點(diǎn),則符合條件的直線l(  )
A.不存在B.恰有一條C.恰有兩條D.有無(wú)數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{1-g(x)}{2}$•(x2+2x+a)+$\frac{1+g(x)}{2}$•ln|x|,其中a∈R,g(x)=$\left\{\begin{array}{l}{1,x>0}\\{-1,x<0}\end{array}\right.$.設(shè)A(x1,f(x1)),B(x2,f(x2))為函數(shù)f(x)圖象上的兩點(diǎn),且x1<x2
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)的圖象在點(diǎn)A,B處的切線互相垂直,且x2<0,求x2-x1的最小值,并指出此時(shí)x1,x2的值;
(3)若存在x1,x2使函數(shù)f(x)的圖象在點(diǎn)A,B處的切線重合,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知曲線y=$\frac{x^2}{2}$-3lnx的一條切線的斜率為-2,則該切線的方程為( 。
A.y=-2x-$\frac{3}{2}$-3ln3B.y=-2x+$\frac{3}{2}$C.y=-2x+$\frac{21}{2}$-3ln3D.y=-2x+$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè) a,b是互不垂直的兩條異面直線,則下列命題成立的是( 。
A.存在唯一直線l,使得l丄 a,且l丄bB.存在唯一直線l,使得l∥a,且l丄b
C.存在唯一平面α,使得 a?α,且 b∥αD.存在唯一平面α,使得a?α,且b丄α

查看答案和解析>>

同步練習(xí)冊(cè)答案