分析 求得橢圓的a,b,c,可得右焦點,求得直線AB的方程,代入橢圓方程,可得交點A,B的坐標,由兩點的距離公式計算即可得到所求弦長.
解答 解:橢圓$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1的a=$\sqrt{5}$,b=2,
c=$\sqrt{5-4}$=1,右焦點為(1,0),
直線的方程為y=2(x-1),
代入橢圓方程,可得
6x2-10x=0,
解得x=0或x=$\frac{5}{3}$,
即有交點為A(0,-2),B($\frac{5}{3}$,$\frac{4}{3}$),
則弦長為|AB|=$\sqrt{(0-\frac{5}{3})^{2}+(-2-\frac{4}{3})^{2}}$=$\frac{5\sqrt{5}}{3}$.
點評 本題考查直線和橢圓的位置關系,考查直線方程和橢圓方程聯(lián)立,求交點和弦長,考查運算能力,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-1] | B. | [2,+∞) | C. | (-∞,$\frac{1}{2}$) | D. | ($\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | 4 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\left.\begin{array}{l}{A∈α}\\{a?α}\end{array}\right\}$⇒A∈α | B. | $\left.\begin{array}{l}{A∈α,A∈β}\\{α∩β=α}\end{array}\right\}$⇒A∈α | ||
C. | $\left.\begin{array}{l}{A∈α}\\{A∈β}\end{array}\right\}$⇒α∩β=A | D. | $\left.\begin{array}{l}{A∈α}\\{B∈α}\end{array}\right\}$⇒AB?α |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 24 | B. | 25 | C. | 27 | D. | 30 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com