16.如圖,在四棱錐A-BCD中,△ABD、△BCD均為正三角形,且平面ABD⊥平面BCD,點O,M分別為棱BD,AC的中點,則異面直線AB與OM所成角的余弦值為(  )
A.$\frac{{\sqrt{6}}}{4}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}+\sqrt{6}}}{4}$

分析 如圖所示,連接OA,OC,取BC的中點E,連接ME,OE,則∠EMO(或其補角)為異面直線AB與OM所成角.利用余弦定理可得結(jié)論.

解答 解:如圖所示,連接OA,OC,取BC的中點E,連接ME,OE,則
∠EMO(或其補角)為異面直線AB與OM所成角,
∵O為棱BD的中點,
∴OA⊥BD,
∵平面ABD⊥平面BCD,
∴OA⊥平面BCD.
設AB=2,則EM=EO=1,AO=CO=$\sqrt{3}$,∴OM=$\frac{1}{2}$AC=$\frac{\sqrt{6}}{2}$,
∴異面直線AB與OM所成角的余弦值為$\frac{1+\frac{6}{4}-1}{2×1×\frac{\sqrt{6}}{2}}$=$\frac{\sqrt{6}}{4}$.
故選:A.

點評 本題考查空間角,考查學生的計算能力,確定異面直線AB與OM所成角是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.已知指數(shù)函數(shù)y=f(x)的圖象過點(2,4),若f(m)=8,則m=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$不共面,則滿足A,B,C,P四點共面的條件是( 。
A.$\overrightarrow{OP}$=2x$\overrightarrow{AO}$+3y$\overrightarrow{BO}$+4z$\overrightarrow{CO}$,且2x+3y+4z=1B.$\overrightarrow{OP}$+$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$
C.$\overrightarrow{AP}$=$\overrightarrow{AB}$+3$\overrightarrow{AC}$D.$\overrightarrow{AP}$=2$\overrightarrow{OB}$-$\overrightarrow{OC}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知在等差數(shù)列{an}中,數(shù)列的前n項和記為Sn,且S3=0,S5=-5.求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=[ax2-(5a+1)x+7a+3]ex
(1)若a=0,求函數(shù)f(x)在點A(0,f(0))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性,并求出單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知△ABC滿足$|{\overrightarrow{AB}}|=1,\;|{\overrightarrow{BC}}|=\sqrt{3},\;|{\overrightarrow{CA}}|=1$,則$\overrightarrow{AB}•\overrightarrow{BC}$=-$\frac{3}{2}$,又設D是BC邊中線AM上一動點,則$\overrightarrow{BD}•\overrightarrow{BC}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.“x>3”是“x>5”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x(x+4),x≥0}\\{x(x-4),x<0}\end{array}\right.$,
(1)求f(f(-3))的值;
(2)求函數(shù)f(x)的零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.求值
(1)sin105°cos75°
(2)cos$\frac{π}{17}$cos$\frac{2π}{17}$cos$\frac{4π}{17}$cos$\frac{8π}{17}$.

查看答案和解析>>

同步練習冊答案