【題目】狄利克雷函數(shù)為F(x).有下列四個命題:①此函數(shù)為偶函數(shù),且有無數(shù)條對稱軸;②此函數(shù)的值域是;③此函數(shù)為周期函數(shù),但沒有最小正周期;④存在三點(diǎn),使得△ABC是等腰直角三角形,以上命題正確的是(  )

A.①②B.①③C.③④D.②④

【答案】B

【解析】

①根據(jù)奇偶性定義和對稱軸對應(yīng)的表達(dá)式進(jìn)行判斷;②根據(jù)的取值得到值域;③根據(jù)周期性的定義進(jìn)行分析;④先假設(shè)存在,然后推理證明是否存在.

的定義域?yàn)?/span>關(guān)于原點(diǎn)對稱,當(dāng)為有理數(shù)時,,當(dāng)為無理數(shù)時,,

所以恒成立,所以是偶函數(shù),

取非零有理數(shù),當(dāng)為有理數(shù)時,,當(dāng)為無理數(shù)時,

所以恒成立,有無數(shù)種可能,所以有無數(shù)條對稱軸;

②因?yàn)?/span>的取值只有,所以的值域?yàn)?/span>;

③取有理數(shù),當(dāng)為有理數(shù)時,,當(dāng)為無理數(shù)時,,

所以恒成立,有無數(shù)種可能,所以是周期函數(shù)且無最小正周期;

④設(shè)存在滿足條件,

根據(jù)函數(shù)值域可知,的可能組合為:兩個有理數(shù)一個無理數(shù)、兩個無理數(shù)一個有理數(shù),

(1)不妨設(shè)為有理數(shù),為無理數(shù),因?yàn)?/span>為等腰直角三角形,所以只能為的斜邊,

所以,所以為有理數(shù),與假設(shè)矛盾,故不成立;

(2)不妨設(shè)為無理數(shù),為有理數(shù),因?yàn)?/span>為等腰直角三角形,所以只能為的斜邊,

所以,所以為無理數(shù),與假設(shè)矛盾,故不成立,

綜上可知:不存在三點(diǎn)使得為等腰直角三角形.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,底面是直角梯形,其中,,,為棱上的點(diǎn),且

1)求證:平面;

2)求二面角的余弦值;

3)設(shè)為棱上的點(diǎn)(不與,重合),且直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,,前項(xiàng)和為,且.

1)求,的值;

2)證明:數(shù)列是等差數(shù)列,并寫出其通項(xiàng)公式;

3)設(shè)),試問是否存在正整數(shù),(其中,使得,,成等比數(shù)列?若存在,求出所有滿足條件的數(shù)對;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,且點(diǎn)在橢圓上.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)點(diǎn)在橢圓的圖像上運(yùn)動時,點(diǎn)在曲線上運(yùn)動,求曲線的軌跡方程,并指出該曲線是什么圖形;

3)過橢圓上異于其頂點(diǎn)的任意一點(diǎn)作曲線的兩條切線,切點(diǎn)分別為不在坐標(biāo)軸上),若直線軸,軸上的截距分別為試問:是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名射擊運(yùn)動員在進(jìn)行射擊訓(xùn)練,已知甲命中10環(huán),9環(huán),8環(huán)的概率分別是,,,乙命中10環(huán),9環(huán),8環(huán)的概率分別是,,任意兩次射擊相互獨(dú)立.

1)求甲運(yùn)動員兩次射擊命中環(huán)數(shù)之和恰好為18的概率;

2)現(xiàn)在甲、乙兩人進(jìn)行射擊比賽,每一輪比賽兩人各射擊1次,環(huán)數(shù)高于對方為勝,環(huán)數(shù)低于對方為負(fù),環(huán)數(shù)相等為平局,規(guī)定連續(xù)勝利兩輪的選手為最終的勝者,比賽結(jié)束,求恰好進(jìn)行3輪射擊后比賽結(jié)束的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海水稻就是耐鹽堿水稻,是一種介于野生稻和栽培稻之間的普遍生長在海邊灘涂地區(qū)的水稻,具有抗旱抗?jié)、抗病蟲害、抗倒伏抗鹽堿等特點(diǎn).近年來,我國的海水稻研究取得了階段性成果,目前已開展了全國大范圍試種.某農(nóng)業(yè)科學(xué)研究所分別抽取了試驗(yàn)田中的海水稻以及對照田中的普通水稻各株,測量了它們的根系深度(單位:),得到了如下的莖葉圖,其中兩豎線之間表示根系深度的十位數(shù),兩邊分別是海水稻和普通水稻根系深度的個位數(shù),則下列結(jié)論中不正確的是(

A.海水稻根系深度的中位數(shù)是

B.普通水稻根系深度的眾數(shù)是

C.海水稻根系深度的平均數(shù)大于普通水稻根系深度的平均數(shù)

D.普通水稻根系深度的方差小于海水稻根系深度的方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若曲線在點(diǎn)處的切線與曲線切于點(diǎn),求的值;

(Ⅲ)若恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)是橢圓的一個頂點(diǎn),是等腰直角三角形.

1)求橢圓的方程;

2)設(shè)點(diǎn)是橢圓上一動點(diǎn),求線段的中點(diǎn)的軌跡方程;

3)過點(diǎn)分別作直線交橢圓于,兩點(diǎn),設(shè)兩直線的斜率分別為,,

,探究:直線是否過定點(diǎn),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B是海岸線OM、ON上兩個碼頭,海中小島有碼頭Q到海岸線OM、ON的距離分別為、,測得,,以點(diǎn)O為坐標(biāo)原點(diǎn),射線OMx軸的正半軸,建立如圖所示的直角坐標(biāo)系,一艘游輪以小時的平均速度在水上旅游線AB航行(將航線AB看作直線,碼頭Q在第一象限,航線BB經(jīng)過點(diǎn)Q.

1)問游輪自碼頭A沿方向開往碼頭B共需多少分鐘?

2)海中有一處景點(diǎn)P(設(shè)點(diǎn)P平面內(nèi),,且),游輪無法靠近,求游輪在水上旅游線AB航行時離景點(diǎn)P最近的點(diǎn)C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案