【題目】甲、乙兩名射擊運(yùn)動(dòng)員在進(jìn)行射擊訓(xùn)練,已知甲命中10環(huán),9環(huán),8環(huán)的概率分別是,,,乙命中10環(huán),9環(huán),8環(huán)的概率分別是,,,任意兩次射擊相互獨(dú)立.
(1)求甲運(yùn)動(dòng)員兩次射擊命中環(huán)數(shù)之和恰好為18的概率;
(2)現(xiàn)在甲、乙兩人進(jìn)行射擊比賽,每一輪比賽兩人各射擊1次,環(huán)數(shù)高于對(duì)方為勝,環(huán)數(shù)低于對(duì)方為負(fù),環(huán)數(shù)相等為平局,規(guī)定連續(xù)勝利兩輪的選手為最終的勝者,比賽結(jié)束,求恰好進(jìn)行3輪射擊后比賽結(jié)束的概率
【答案】(1)(2)
【解析】
(1)甲運(yùn)動(dòng)員兩次射擊命中環(huán)數(shù)之和恰好為18包含“第一次10環(huán)和第二次8環(huán)”,“第一次8環(huán)第二次10環(huán)”,“第一次9環(huán)和第二次9環(huán)”這三種情況,分別求三種情況概率再求和;
(2)求恰好進(jìn)行3輪射擊后比賽結(jié)束的概率,先確定甲勝利,平局,失敗的概率,恰好進(jìn)行3輪射擊后比賽結(jié)束情形包括兩種:①當(dāng)甲獲得最終勝利結(jié)束3輪比賽時(shí),由第2輪、第3輪甲連續(xù)勝利,第一輪甲沒(méi)有獲得勝利,算出其概率P1;②當(dāng)乙獲得最終勝利結(jié)束3輪比賽時(shí),則第2輪、第3輪乙連續(xù)勝利,第1輪乙沒(méi)有獲得勝利,其概率P2,兩情形概率之和即為所求.
(1)記X表示甲運(yùn)動(dòng)員兩次射擊命中環(huán)數(shù)之和,
則X=18包含“第一次10環(huán)和第二次8環(huán)”,“第一次8環(huán)第二次10環(huán)”,“第一次9環(huán)和第二次9環(huán)”這三種情況,
∴甲運(yùn)動(dòng)員兩次射擊命中環(huán)數(shù)之和恰好為18的概率為:
P.
(2)記Ai表示甲在第i輪勝利,Bi表示甲在第i輪平局,i表示甲在第i輪失敗,
∴P(Ai),P(Bi),P(i),
①當(dāng)甲獲得最終勝利結(jié)束3輪比賽時(shí),由第2輪、第3輪甲連續(xù)勝利,第一輪甲沒(méi)有獲得勝利,
其概率P1,
②當(dāng)乙獲得最終勝利結(jié)束3輪比賽時(shí),則第2輪、第3輪乙連續(xù)勝利,第1輪乙沒(méi)有獲得勝利,
其概率P2,
∴經(jīng)過(guò)3輪比賽結(jié)束的概率P.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前n項(xiàng)和為,且,
(1)求的值,并求出及數(shù)列的通項(xiàng)公式;
(2)設(shè)求數(shù)列的前n項(xiàng)和
(3)設(shè)在數(shù)列中取出(為常數(shù))項(xiàng),按照原來(lái)的順序排成一列,構(gòu)成等比數(shù)列.若對(duì)任意的數(shù)列,均有試求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱柱中,是棱上的一點(diǎn),平面,,,.
(1)若是的中點(diǎn),證明:平面平面;
(2)若,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,且點(diǎn)在橢圓上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)點(diǎn)在橢圓的圖像上運(yùn)動(dòng)時(shí),點(diǎn)在曲線上運(yùn)動(dòng),求曲線的軌跡方程,并指出該曲線是什么圖形;
(3)過(guò)橢圓上異于其頂點(diǎn)的任意一點(diǎn)作曲線的兩條切線,切點(diǎn)分別為不在坐標(biāo)軸上),若直線在軸,軸上的截距分別為試問(wèn):是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)任意x∈R,存在函數(shù)f(x)滿足( )
A.f(cosx)=sin2xB.f(sin2x)=sinx
C.f(sinx)=sin2xD.f(sinx)=cos2x
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】狄利克雷函數(shù)為F(x).有下列四個(gè)命題:①此函數(shù)為偶函數(shù),且有無(wú)數(shù)條對(duì)稱軸;②此函數(shù)的值域是;③此函數(shù)為周期函數(shù),但沒(méi)有最小正周期;④存在三點(diǎn),使得△ABC是等腰直角三角形,以上命題正確的是( 。
A.①②B.①③C.③④D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某餅屋進(jìn)行為期天的五周年店慶活動(dòng),現(xiàn)策劃兩項(xiàng)有獎(jiǎng)促銷活動(dòng),活動(dòng)一:店慶期間每位顧客一次性消費(fèi)滿元,可得元代金券一張;活動(dòng)二:活動(dòng)期間每位顧客每天有一次機(jī)會(huì)獲得一個(gè)一元或兩元紅包.根據(jù)前一年該店的銷售情況,統(tǒng)計(jì)了位顧客一次性消費(fèi)的金額數(shù)(元),頻數(shù)分布表如下圖所示:
一次性消費(fèi)金額數(shù) | |||||
人數(shù) |
以這位顧客一次消費(fèi)金額數(shù)的頻率分布代替每位顧客一次消費(fèi)金額數(shù)的概率分布.
(1)預(yù)計(jì)該店每天的客流量為人次,求這次店慶期間,商家每天送出代金券金額數(shù)的期望;
(2)假設(shè)顧客獲得一元或兩元紅包的可能性相等,商家在店慶活動(dòng)結(jié)束后會(huì)公布幸運(yùn)數(shù)字,連續(xù)元的“店慶幸運(yùn)紅包”一個(gè).若公布的幸運(yùn)數(shù)字是“”,求店慶期間一位連續(xù)天消費(fèi)的顧客獲得紅包金額總數(shù)的期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直四棱柱的側(cè)棱長(zhǎng)為,底面是邊長(zhǎng)的矩形,為的中點(diǎn),
(1)求證:平面,
(2)求異面直線與所成的角的大。ńY(jié)果用反三角函數(shù)表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的奇數(shù)項(xiàng)是首項(xiàng)為1的等差數(shù)列,偶數(shù)項(xiàng)是首項(xiàng)為2的等比數(shù)列.設(shè)數(shù)列的前n項(xiàng)和為且滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)若求正整數(shù)的值;
(3)是否存在正整數(shù),使得恰好為數(shù)列的一項(xiàng)?若存在,求出所有滿足條件的正整數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com