分析 由雙曲線的方程可得a,b,由c=$\sqrt{{a}^{2}+^{2}}$,可得c,由離心率公式和漸近線方程,計算即可得到所求.
解答 解:雙曲線的方程$\frac{y^2}{4}-\frac{x^2}{8}=1$,
可得a=2,b=2$\sqrt{2}$,c=$\sqrt{{a}^{2}+^{2}}$=2$\sqrt{3}$,
即有離心率e=$\frac{c}{a}$=$\sqrt{3}$,
漸近線方程為y=±$\frac{\sqrt{2}}{2}$x.
故答案為:$\sqrt{3}$,y=±$\frac{\sqrt{2}}{2}$x.
點(diǎn)評 本題考查雙曲線的離心率的求法和漸近線方程的求法,注意運(yùn)用雙曲線方程求得a,b,c,考查運(yùn)算能力,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{6-π}{3π}$ | B. | 1 | C. | $\frac{π}{2}$ | D. | $\frac{4-π}{2π}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{2}$+1 | C. | $\sqrt{5}$ | D. | $\sqrt{5}$-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在CD1上存在點(diǎn)Q,使得PQ∥平面AA1C1C | |
B. | 在CD1上存在點(diǎn)Q,使得PQ⊥平面AA1C1C | |
C. | 在CD1上存在點(diǎn)Q,使得PQ∥平面A1BC1 | |
D. | 在CD1上存在點(diǎn)Q,使得PQ⊥平面A1BC1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com