6.若x,y滿足$\left\{\begin{array}{l}x-y≥0\\ x+y≤1\\ y≥0.\end{array}\right.$,則z=x+2y的最大值為( 。
A.0B.1C.2D.$\frac{3}{2}$

分析 作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值.

解答 解:作出不等式對應的平面區(qū)域,
由z=x+2y,得y=-$\frac{1}{2}x+\frac{z}{2}$,
平移直線y=-$\frac{1}{2}x+\frac{z}{2}$,由圖象可知當直線y=-$\frac{1}{2}x+\frac{z}{2}$經(jīng)過點A時,直線y=-$\frac{1}{2}x+\frac{z}{2}$的截距最大,此時z最大.
由$\left\{\begin{array}{l}{x-y=0}\\{x+y=1}\end{array}\right.$,得$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{1}{2}}\end{array}\right.$,
即A($\frac{1}{2}$,$\frac{1}{2}$),
此時z的最大值為z=$\frac{1}{2}$+2×$\frac{1}{2}$=$\frac{3}{2}$,
故選:D.

點評 本題主要考查線性規(guī)劃的應用,利用圖象平行求得目標函數(shù)的最大值,利用數(shù)形結合是解決線性規(guī)劃問題中的基本方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

16.設雙曲線的方程$\frac{y^2}{4}-\frac{x^2}{8}=1$,則該雙曲線的離心率為$\sqrt{3}$,漸近線方程為y=±$\frac{\sqrt{2}}{2}$x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.甲、乙兩家快餐店對某日7個時段光順的客人人數(shù)進行統(tǒng)計并繪制莖葉圖如圖所示(下面簡稱甲數(shù)據(jù)、乙數(shù)據(jù)),且乙數(shù)據(jù)的眾數(shù)為17,甲數(shù)據(jù)的平均數(shù)比乙數(shù)據(jù)平均數(shù)少2.
(1)求a,b的值.并計算乙數(shù)據(jù)的方差;
(2)現(xiàn)從甲、乙兩組數(shù)據(jù)中隨機各選一個數(shù)分別記為m,n.并進行對比分析,有放回的選取2次,記m>n的次數(shù)為X.求X的數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若a=$\int_{-\frac{π}{2}}^{\frac{π}{2}}$($\frac{1}{π}$-sinx)dx,則(x-$\frac{a}{{\sqrt{x}}}$)6的二項展開式中的常數(shù)項為15(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.記樣本x1,x2,…,xm的平均數(shù)為$\overline{x}$,樣本y1,y2,…,yn的平均數(shù)為$\overline{y}$($\overline{x}$≠$\overline{y}$),若樣本x1,x2,…,xm,y1,y2,…,yn的平均數(shù)為$\overline{z}$=$\frac{1}{4}$$\overline{x}$+$\frac{3}{4}$$\overline{y}$,則$\frac{m}{n}$的值為(  )
A.3B.4C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列函數(shù)中,既是奇函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的是( 。
A.y=x3B.y=lnxC.y=sinxD.y=2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知i是虛數(shù)單位,a∈R,復數(shù)z1=3-ai,z2=1+2i,若z1•z2是純虛數(shù),則a=(  )
A.-$\frac{3}{2}$B.$\frac{3}{2}$C.-6D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合M={x|x2+x-12≤0},N={y|y=3x,x≤1},則集合{x|x∈M且x∉N}為( 。
A.(0,3]B.[-4,3]C.[-4,0)D.[-4,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),點A(-4,0),B(0,2)和點P(m,n)(m≠0)都在橢圓C上,BP⊥AB,且直線BP與x軸交于點M.
(Ⅰ)求橢圓C的標準方程和離心率;
(Ⅱ)求點P的坐標;
(Ⅲ)若以M為圓心,r為半徑的圓在橢圓C的內(nèi)部,求r的取值范圍.

查看答案和解析>>

同步練習冊答案