5.在銳角△ABC中,BC=1,B=3A,則AC的取值范圍是(1,2$\sqrt{2}$-1).

分析 根據(jù)正弦定理和B=3A及三倍角的正弦公式化簡得到AC=4cos22A-1,要求AC的范圍,只需找出3-4sin2A,的范圍即可,根據(jù)銳角△ABC和B=3A求出A的范圍,然后根據(jù)余弦函數(shù)的增減性得到cos2A的范圍即可.

解答 解:由正弦定理$\frac{AC}{BC}$=$\frac{sinB}{sinA}$=$\frac{sin3A}{sinA}$=$\frac{sin(A+2A)}{sinA}$=cos2A+2cos2A=4cos2A-1.
△ABC是銳角三角形,
∴B<0,即3A<90°,
因此,A<30°;
在三角形中兩角之和(A+B)<180°,即4A<180°,
∴A<45;
∵C<90°,
∴A+B>90°,即4A>90°,
∴A>22.5°,
因此,22.5°<A<30°,
∴45°<2A<60°,
$\frac{\sqrt{2}}{2}$<$\frac{1}{2}$cos2A<$<\frac{\sqrt{2}}{2}$,
∴1<4cos22A-1<2$\sqrt{2}$-1,
∴AC的取值范圍為(1,2$\sqrt{2}$-1).

點評 此題考查了正弦定理,以及二倍角的正弦公式及兩角和正弦公式化簡求值,本題的突破點是根據(jù)三角形為銳角三角形、內(nèi)角和定理及B=3A變換角得到角的范圍.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.若經(jīng)過雙曲線左焦點的直線與雙曲線交于A,B兩點,則把線段AB稱為該雙曲線的左焦點弦,雙曲線C:$\frac{{x}^{2}}{4}$-y2=1長度為整數(shù)且不超過4的左焦點弦的條數(shù)為( 。
A.6B.7C.8D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設雙曲線的方程$\frac{y^2}{4}-\frac{x^2}{8}=1$,則該雙曲線的離心率為$\sqrt{3}$,漸近線方程為y=±$\frac{\sqrt{2}}{2}$x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若以x軸正方向為始邊,曲線上的點與圓心的連線為終邊的角θ為參數(shù),則圓x2+y2-2x=0的參數(shù)方程為$\left\{\begin{array}{l}{x=cosθ+1}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與直線x+2y-1=0垂直,則雙曲線的離心率等于( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.3D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.正方體ABCD-A1B1C1D1的棱長為1,動點P,Q分別在棱BC,CC1上,過點A,P,Q的平面截該正方體所得的截面記為S,設BP=x,CQ=y,其中x,y∈[0,1],下列命題正確的是②.(寫出所有正確命題的編號)
①當x=0時,S為矩形,其面積最大為1;
②當x=y=$\frac{1}{2}$時,S為等腰梯形;
③當x=$\frac{1}{2}$,y=$\frac{3}{4}$時,S為六邊形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.甲、乙兩家快餐店對某日7個時段光順的客人人數(shù)進行統(tǒng)計并繪制莖葉圖如圖所示(下面簡稱甲數(shù)據(jù)、乙數(shù)據(jù)),且乙數(shù)據(jù)的眾數(shù)為17,甲數(shù)據(jù)的平均數(shù)比乙數(shù)據(jù)平均數(shù)少2.
(1)求a,b的值.并計算乙數(shù)據(jù)的方差;
(2)現(xiàn)從甲、乙兩組數(shù)據(jù)中隨機各選一個數(shù)分別記為m,n.并進行對比分析,有放回的選取2次,記m>n的次數(shù)為X.求X的數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若a=$\int_{-\frac{π}{2}}^{\frac{π}{2}}$($\frac{1}{π}$-sinx)dx,則(x-$\frac{a}{{\sqrt{x}}}$)6的二項展開式中的常數(shù)項為15(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合M={x|x2+x-12≤0},N={y|y=3x,x≤1},則集合{x|x∈M且x∉N}為(  )
A.(0,3]B.[-4,3]C.[-4,0)D.[-4,0]

查看答案和解析>>

同步練習冊答案