分析 先求出集合A,B,將條件A∩B=A,轉化為A⊆B,利用集合關系確定a的取值即可.
解答 解:∵A={x|2a<x<a+3},B={x|x2-4x-5≤0}={x|-1≤x≤5},
∵A∩B=A,
∴A⊆B,
當A=∅時,即2a≥a+3時,解得a≥3時,滿足題意,
當A≠∅時,$\left\{\begin{array}{l}{2a<a+3}\\{2a≥-1}\\{a+3≤5}\end{array}\right.$,
解得-$\frac{1}{2}$≤a≤2,
綜上所述a的取值范圍為[-$\frac{1}{2}$,2]∪[3,+∞),
∴M=[-$\frac{1}{2}$,2]∪[3,+∞).
點評 本題主要考查集合關系的應用,將條件A∩B=A,轉化為A⊆B是解決本題的關系,注意要對集合A進行分類討論.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | M=N | B. | M?N | C. | N?M | D. | M∩N=∅ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com