16.已知集合U={1,3,5,7,9},A={3,7},則∁UA={1,5,9}.

分析 直接利用補集的運算法則求解即可.

解答 解:集合U={1,3,5,7,9},A={3,7},則∁UA={1,5,9}.
故答案為:{1,5,9}.

點評 本題考查集合的基本運算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.正六棱錐的底面周長為24,斜高SH與高SO所成的角為30°.
求:(1)棱錐的高;(2)斜高;(3)側(cè)棱長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)常數(shù)λ>0,a>0,函數(shù)f(x)=$\frac{{x}^{2}}{λ+x}$-alnx.當a=$\frac{3}{4}$λ時,若f(x)最小值為0,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.圓x2+y2=1上至少有兩點到直線y=kx+2的距離為$\frac{1}{2}$,則直線l的斜率k的范圍為$k∈({-∞,-\frac{{\sqrt{7}}}{3}})∪({\frac{{\sqrt{7}}}{3},+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an},Sn是其前n項和,滿足${S_n}+{S_{n+1}}=2{n^2}+b$,a1=a.
(1)若a=b=1,
(i)求出a2,a3的值;
(ii)求{an}的通項公式.
(2)是否存在一個各項均為正數(shù)的等比數(shù)列{bn},存在一個數(shù)列{an}滿足an=lnbn,如果存在,求出{an}和{bn}的通項公式,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知圓錐的母線長為5,高為$\sqrt{21}$,則此圓錐的底面積和側(cè)面積之比為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在正三棱柱ABC-A′B′C′中,D、E分別為CC′,A′B中點,CC′=$\sqrt{3}BC$.求證:
(1)直線EC′∥平面ABD;
(2)直線EC⊥平面ABD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c,且滿足$cos\frac{A}{2}=\frac{{2\sqrt{5}}}{5}$,$\overrightarrow{AB}•\overrightarrow{AC}=3$
(1)求△ABC的面積;
(2)求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1,是否存在直線l,使其截雙曲線所得弦的中點為P(1,1)?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案