5.設全集是實數(shù)集R,集合A={x|-4<x<2},B={x|m-1<x<m+1}.
(1)當m=2時,求A∪B,∁RB;
(2)若A∩B=∅,求實數(shù)m的取值范圍.

分析 (1)若m=2,接觸集合B,然后求解即可;
(2)若A∩B=∅,則m+1≤-4,或m-1≥2,解得:實數(shù)m的取值范圍.

解答 解:(1)因為m=2,
所以B={x|-1<x<3},
A∪B={x|-4<x<3},
RB={x|x≤-1或x≥3};
(2)∵A∩B=∅,
則m+1≤-4,或m-1≥2,
解得:m≤-5或m≥3.

點評 本題考查的知識點是集合的交集運算,元素與集合的關(guān)系,分類討論思想,難度中檔

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

15.閱讀算法流程圖,運行相應的程序,輸出的結(jié)果為$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點分別為F1,F(xiàn)2,Q為右支上一點,P點在直線x=-a上,且滿足$\overrightarrow{PQ}$=$\overrightarrow{Q{F}_{2}}$,$\overrightarrow{OQ}$=λ($\frac{\overrightarrow{O{F}_{2}}}{|\overrightarrow{O{F}_{2}}|}$+$\frac{\overrightarrow{OP}}{|\overrightarrow{OP}|}$)(λ≠0),則該雙曲線的離心率為( 。
A.$\sqrt{5}$+1B.$\sqrt{2}$+1C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.圓心在原點,半徑為4的圓的方程為x2+y2=16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{2}$lg(kx),g(x)=lg(x+1).
(1)求f(x)-g(x)的定義域.
(2)若方程f(x)=g(x)有且僅有一個實數(shù)根,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)f(x)=$\frac{2{x}^{2}+x+2}{{x}^{2}+1}$,則f(x)的最大值與最小值的和為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.logcotθ$\frac{sinθ+sin2θ}{1+cosθ+cos2θ}$=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),過原點的兩條直線l1和l2分別與C交于點A、B和C、D,得到平行四邊形ACBD.
(1)若a=4,b=3,且ACBD為正方形時,求該正方形的面積S;
(2)若直線l1的方程為bx-ay=0,l1和l2關(guān)于y軸對稱,Γ上任意一點P到l1和l2的距離分別為d1和d2,證明:d12+d22=$\frac{2{a}^{2}^{2}}{{a}^{2}+^{2}}$;
(3)當ACBD為菱形,且圓x2+y2=1內(nèi)切于菱形ACBD時,求a,b滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)f(x)=sin2x-cos2x的一個單調(diào)遞增區(qū)間是( 。
A.$[-\frac{3π}{4},\frac{π}{4}]$B.$[-\frac{π}{4},\frac{3π}{4}]$C.$[-\frac{3π}{8},\frac{π}{8}]$D.$[-\frac{π}{8},\frac{3π}{8}]$

查看答案和解析>>

同步練習冊答案