15.閱讀算法流程圖,運行相應(yīng)的程序,輸出的結(jié)果為$\frac{5}{3}$

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)計算變量z,y的值,并輸出$\frac{y}{x}$的值,模擬程序的運行,用表格對程序運行過程中各變量的值進行分析,不難得到輸出結(jié)果.

解答 解:程序在運行過程中各變量的值如下表示:
是否繼續(xù)循環(huán)   x   y  z
                  循環(huán)前/1   1  2
第一圈       是         1   2  3
第二圈       是         2   3  5
第三圈       是         3   5  8
第四圈       否
此時可得:$\frac{y}{x}$=$\frac{5}{3}$.
故答案為:$\frac{5}{3}$.

點評 根據(jù)流程圖(或偽代碼)寫程序的運行結(jié)果,是算法這一模塊最重要的題型,其處理方法是:①分析流程圖(或偽代碼),從流程圖(或偽代碼)中既要分析出計算的類型,又要分析出參與計算的數(shù)據(jù)(如果參與運算的數(shù)據(jù)比較多,也可使用表格對數(shù)據(jù)進行分析管理)⇒②建立數(shù)學(xué)模型,根據(jù)第一步分析的結(jié)果,選擇恰當?shù)臄?shù)學(xué)模型③解模.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.化簡$\sqrt{1-si{n}^{2}160°}$=( 。
A.cos20°B.-cos20°C.±cos20°D.±|cos20°|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(Ⅰ)解關(guān)于x的一元二次不等式x(x-2)-3>0;
(Ⅱ)解關(guān)于x的一元二次不等式(x-4)(x-2a)<0(其中a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.拋物線x2=-$\frac{1}{2}$y的準線方程是( 。
A.x=$\frac{1}{2}$B.x=$\frac{1}{8}$C.y=$\frac{1}{2}$D.y=$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)條件p:-1<x<5,條件q:0<x<a,其中a為正數(shù),若p是q的必要不充分條件,則a的取值范圍為( 。
A.(0,5]B.(0,5)C.[5,+∞)D.(5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C的對邊分別是a,b,c,向量$\overrightarrow{p}$=(a,2b-c),$\overrightarrow{q}$=(cosA,cosC),且$\overrightarrow{p}$∥$\overrightarrow{q}$
(1)求角A的大小;
(2)設(shè)f(x)=cos(ωx-$\frac{A}{2}$)+sinωx(ω>0)且f(x)的最小正周期為π,求f(x)在區(qū)間[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={0,1},B={-1,0,a2+a-1},且A⊆B,則a等于( 。
A.1B.-2或1C.-2D.-2或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知t為常數(shù)且0<t<1,函數(shù)g(x)=$\frac{1}{2}$(x+$\frac{1-t}{x}$)(x>0),h(x)=$\sqrt{{x}^{2}-2x+2+t}$.
(1)求證:g(x)在(0,$\sqrt{1-t}$)上單調(diào)遞減,在($\sqrt{1-t}$,+∞)上單調(diào)遞增;
(2)若函數(shù)g(x)與h(x)的最小值恰為函數(shù)f(x)=x3+ax2+bx(a,b∈R)的兩個零點,求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)全集是實數(shù)集R,集合A={x|-4<x<2},B={x|m-1<x<m+1}.
(1)當m=2時,求A∪B,∁RB;
(2)若A∩B=∅,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案