13.圓心在原點(diǎn),半徑為4的圓的方程為x2+y2=16.

分析 根據(jù)題意,易得要求圓的圓心坐標(biāo)與半徑,由圓的標(biāo)準(zhǔn)方程可得要求圓的方程為(x-0)2+(y-0)2=42,化簡(jiǎn)即可得答案.

解答 解:根據(jù)題意,圓心在原點(diǎn),即圓心坐標(biāo)為(0,0),
而該圓的半徑r=4,
則其標(biāo)準(zhǔn)方程為(x-0)2+(y-0)2=42,
即x2+y2=16,
故答案為:x2+y2=16.

點(diǎn)評(píng) 本題考查圓的標(biāo)準(zhǔn)方程,掌握?qǐng)A的標(biāo)準(zhǔn)方程的形式是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.拋物線x2=-$\frac{1}{2}$y的準(zhǔn)線方程是( 。
A.x=$\frac{1}{2}$B.x=$\frac{1}{8}$C.y=$\frac{1}{2}$D.y=$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知t為常數(shù)且0<t<1,函數(shù)g(x)=$\frac{1}{2}$(x+$\frac{1-t}{x}$)(x>0),h(x)=$\sqrt{{x}^{2}-2x+2+t}$.
(1)求證:g(x)在(0,$\sqrt{1-t}$)上單調(diào)遞減,在($\sqrt{1-t}$,+∞)上單調(diào)遞增;
(2)若函數(shù)g(x)與h(x)的最小值恰為函數(shù)f(x)=x3+ax2+bx(a,b∈R)的兩個(gè)零點(diǎn),求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.求函數(shù)y=$\frac{sinx+1}{2sinx-1}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=logax+a-e(a>0且a≠1,e=2.71828…)過(guò)點(diǎn)(1,0).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=f2(x)-2f(e2x)+3,若g(x)-k≤0在x∈[e-1,e2]上恒成立,求k的取值范圍;
(3)設(shè)函數(shù)h(x)=af(x+1)+mx2-3m+1在區(qū)間(-$\frac{3}{2}$,2]上有零點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}x+2,-2≤x≤-1\\{x}^{2},-1<x<2\\ 5-0.5x,2≤x≤3\end{array}\right.$,求該函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)全集是實(shí)數(shù)集R,集合A={x|-4<x<2},B={x|m-1<x<m+1}.
(1)當(dāng)m=2時(shí),求A∪B,∁RB;
(2)若A∩B=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.(1)若直線l的傾斜角a滿足$\frac{π}{4}$≤a≤$\frac{3}{4}$π,則直線l的斜率的范圍是(-∞,-1]∪[1,+∞)
(2)若直線l的斜率為$\frac{4}{3}$,而直線m的傾斜角是直線l傾斜角的2倍,則直線m的斜率是$-\frac{24}{7}$
(3)若直線l的傾斜角的正弦是$\frac{\sqrt{3}}{2}$,則直線l的斜率是$±\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)f(x)=xlnx+2015,若f′(x0)=2,則x0=( 。
A.e2B.eC.$\frac{ln2}{2}$D.ln2

查看答案和解析>>

同步練習(xí)冊(cè)答案