【題目】南京市、鹽城市2017屆高三年級第次模擬(本小題滿分14分)

在一張足夠大的紙板上截取一個面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個角上切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個無蓋的長方體紙盒(如圖).設(shè)小正方形邊長為x厘米,矩形紙板的兩邊ABBC的長分別為a厘米和b厘米,其中ab

(1)當a=90時,求紙盒側(cè)面積的最大值;

(2)試確定a,bx的值,使得紙盒的體積最大,并求出最大值.

【答案】見解析

【解析】(1)因為矩形紙板ABCD的面積為3600,故當a=90時,b=40,

從而包裝盒子的側(cè)面積

S=2×x(90-2x)+2×x(40-2x)

=-8x2+260xx(0,20).…………………3分

因為S=-8x2+260x=-8(x)2,

故當x時,側(cè)面積最大,最大值為平方厘米.

答:當x時,紙盒的側(cè)面積的最大值為平方厘米.…………………6分

(2)包裝盒子的體積

V=(a-2x)(b-2x)xx[ab-2(ab)x+4x2],x(0,),b≤60.……………8分

V=x[ab-2(ab)x+4x2]x(ab-4x+4x2)

x(3600-240x+4x2)

=4x3-240x2+3600x…………………10分

當且僅當ab=60時等號成立.

設(shè)f(x)=4x3-240x2+3600x,x(0,30).

f(x)12(x-10)(x-30).

于是當0<x<10時,f(x)0,所以f(x)在(0,10)上單調(diào)遞增;

當10<x<30時,f(x)0,所以f(x)在(10,30)上單調(diào)遞減.

因此當x=10時,f(x)有最大值f(10)=16000,………………12分

此時ab=60,x=10.

答:當ab=60,x=10時紙盒的體積最大,最大值為16000立方厘米.

………………14分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】【2017河北唐山二模】已知函數(shù)的圖象與軸相切,

求證:

,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)h(x)=2sin(2x+ )的圖象向右平移 個單位,再向上平移2個單位,得到函數(shù)f(x)的圖象,則函數(shù)f(x)的圖象(
A.關(guān)于直線x=0對稱
B.關(guān)于直線x=π對稱
C.關(guān)于點( ,0)對稱
D.關(guān)于點( ,2)對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點P、Q、R、S分別在正方體的四條棱上,并且是所在棱的中點,則直線PQ與RS是異面直線的一個圖是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2016-2017學年度蘇錫常鎮(zhèn)四市高三教學情況調(diào)研(二)】某科研小組研究發(fā)現(xiàn):一棵水蜜桃樹的產(chǎn)量(單位:百千克)與肥料費用(單位:百元)滿足如下關(guān)系:,且投入的肥料費用不超過5百元.此外,還需要投入其他成本(如施肥的人工費等)百元.已知這種水蜜桃的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應(yīng)求.記該棵水蜜桃樹獲得的利潤為(單位:百元).

(1)求利潤函數(shù)的函數(shù)關(guān)系式,并寫出定義域;

(2)當投入的肥料費用為多少時,該水蜜桃樹獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017揚州一模如圖,矩形ABCD是一個歷史文物展覽廳的俯視圖,點E在AB上,在梯形BCDE區(qū)域內(nèi)部展示文物,DE是玻璃幕墻,游客只能在ADE區(qū)域內(nèi)參觀.在AE上點P處安裝一可旋轉(zhuǎn)的監(jiān)控攝像頭,為監(jiān)控角,其中M、N在線段DE(含端點)上,且點M在點N的右下方.經(jīng)測量得知:AD=6米,AE=6米,AP=2米,.記(弧度),監(jiān)控攝像頭的可視區(qū)域PMN的面積S平方米.

(1)求S關(guān)于的函數(shù)關(guān)系式,并寫出的取值范圍;(參考數(shù)據(jù):

(2)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,(5a﹣4c)cosB﹣4bcosC=0.
(1)求cosB的值;
(2)若c=5,b= ,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017重慶市八中5月?】已知,,其中為自然對數(shù)的底數(shù).

(1)若恒成立,求實數(shù)的取值范圍;

(2)若在(1)的條件下,取最大值時,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在四面體ABCD中,E、F分別是AC、BD的中點,若CD=2AB=4,EF⊥AB,則EF與CD所成的角為(
A.90°
B.45°
C.60°
D.30°

查看答案和解析>>

同步練習冊答案