四人賽跑,假設其跑過的路程和時間的函數(shù)關系分別是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x如果他們一直跑下去,最終跑在最前面的人具有的函數(shù)關系是
 
考點:函數(shù)的最值及其幾何意義
專題:函數(shù)的性質及應用
分析:根據(jù)題意,本題實際考查各類函數(shù)的增長模型,通過對四類函數(shù)分析,指數(shù)函數(shù)增長最快,選出選項.
解答: 解:根據(jù)題意,最終跑在最前面的人一為函數(shù)值最大的函數(shù),
通過分析各種類型函數(shù)的增長f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x中,f4(x)=2x增長最快,如圖
故答案為:f4(x)=2x
點評:本題考查根據(jù)實際問題選擇函數(shù)類型,通過對二次函數(shù),一次函數(shù),對數(shù)函數(shù),指數(shù)函數(shù)的分析選出選項,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在面積為7的△ABC的邊AB上任取一點P,則△PBC的面積小于
7
3
的概率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式2x+3-x2>0的解集是( 。
A、{x|-1<x<3}
B、{x|x>3或x<-1}
C、{x|-3<x<1}
D、{x|x>1或x<-3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知焦點在y軸上的橢圓
x2
10
+
y2
m
=1的長軸長為8,則m等于( 。
A、4B、8C、10D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA丄平面ABCD,底面ABCD是菱形AB=2,∠BAD=60°.
(Ⅰ)求證:BD丄平面PAC;
(Ⅱ)若PA=Ab,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

據(jù)氣象中心觀察和預測:發(fā)生于M第的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數(shù)圖象如圖所示,過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側部分的面積即為時間t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km)
(1)直接寫出v(km/h)關于t(h)的函數(shù)關系式;
(2)當t=20h,求沙塵暴所經(jīng)過的路程s(km);
(3)若N城位于M地的正南方向,且距M地650km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到N城?如果不會,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知遞增等比數(shù)列{an}滿足:a2+a3+a4=14,且a3+1是a2,a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}的前n項和為Sn,求使Sn<63成立的正整數(shù)n的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線y=k(x+1)與拋物線C:y2=4x相交于A、B兩點,F(xiàn)為拋物線C的焦點,若|FA|=2|FB|,則k=(  )
A、±
2
2
3
B、±
2
3
C、±
1
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正六邊形ABCDEF中,
BA
+
CD
+
BC
=( 。
A、
0
B、
BE
C、
AD
D、
CF

查看答案和解析>>

同步練習冊答案