A. | (-$\frac{7}{3}$,1) | B. | ($-∞,-\frac{7}{3}$)∪(1,+∞) | C. | ($-∞,-\frac{7}{3}$)∪(0,+∞) | D. | ($-\frac{7}{3}$,0) |
分析 根據(jù)題意求出2a+3b-1>0,畫出不等式組$\left\{\begin{array}{l}{2a+3b-1>0}\\{a>0}\\{b>0}\end{array}\right.$表示的平面區(qū)域,再化簡z,
根據(jù)圖形,利用直線的斜率求出z的取值范圍.
解答 解:∵點(diǎn)(a,b)和(2,0)在直線2x+3y-1=0的同側(cè),
∴(2a+3b-1)(4+0-1)>0,
即2a+3b-1>0;
又a>0,且b>0,
∴$\left\{\begin{array}{l}{2a+3b-1>0}\\{a>0}\\{b>0}\end{array}\right.$;
且z=$\frac{4b+1}{4a-1}$=$\frac{b-(-\frac{1}{4})}{a-\frac{1}{4}}$,.
畫出不等式組表示的平面區(qū)域,
設(shè)P($\frac{1}{4}$,-$\frac{1}{4}$),A($\frac{1}{2}$,0),B(0,$\frac{1}{3}$),如圖所示;
計(jì)算kPB=$\frac{\frac{1}{3}+\frac{1}{4}}{0-\frac{1}{4}}$=-$\frac{7}{3}$,
∴z<-$\frac{7}{3}$,
又根據(jù)圖形得,z>0,
∴z∈(-∞,-$\frac{7}{3}$)∪(0,+∞).
故選:C.
點(diǎn)評(píng) 本題考查了不等式組表示平面區(qū)域的應(yīng)用問題,也考查了直線斜率的應(yīng)用問題,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>0 | B. | 0<a≤1 | C. | 0<a≤$\frac{1}{2}$ | D. | a≥1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com