分析 由sinA+sinB=2$\sqrt{6}$sinAsinB,可得$\frac{1}{sinB}$+$\frac{1}{sinA}$=2$\sqrt{6}$,由正弦定理得:$\frac{a}{sinA}=\frac{sinB}=\frac{3}{sin60°}$=2$\sqrt{3}$,$\frac{2\sqrt{3}}{a}$+$\frac{2\sqrt{3}}$=2$\sqrt{6}$,a+b=$\sqrt{2}$ab,由余弦定理知:c2=a2+b2-2abcosC=(a+b)2-2ab(1+cosC),從而可得ab=3,即可求△ABC的面積.
解答 解:∵sinA+sinB=2$\sqrt{6}$sinAsinB,
∴$\frac{1}{sinB}$+$\frac{1}{sinA}$=2$\sqrt{6}$,
由正弦定理得:$\frac{a}{sinA}=\frac{sinB}=\frac{3}{sin60°}$=2$\sqrt{3}$,
∴$\frac{2\sqrt{3}}{a}$+$\frac{2\sqrt{3}}$=2$\sqrt{6}$,
∴a+b=$\sqrt{2}$ab…(1)
由余弦定理知:c2=a2+b2-2abcosC=(a+b)2-2ab(1+cosC)…(2)
由(1)(2)知道:32=($\sqrt{2}$ab)2-2ab(1+cos60°)
整理:(2ab+3)(ab-3)=0:
∵2ab+3>0,
∴ab=3,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$×3×sin60°=$\frac{3\sqrt{3}}{4}$.
點(diǎn)評 本題考查正弦定理、余弦定理,考查三角形面積的計算,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2} | B. | {2,4} | C. | {1,2,4} | D. | {1,2,2,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com