已知拋物線(xiàn)y2=4x的焦點(diǎn)為F,△ABC的三個(gè)頂點(diǎn)均在拋物線(xiàn)上,若F是△ABC的重心,則|FA|+|FB|+|FC|=(  )
A、5B、6C、7D、8
考點(diǎn):拋物線(xiàn)的簡(jiǎn)單性質(zhì)
專(zhuān)題:計(jì)算題,圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:根據(jù)點(diǎn)F是△ABC重心,進(jìn)而可求x1+x2+x3的值,再根據(jù)拋物線(xiàn)的定義,即可求得答案.
解答: 解:拋物線(xiàn)焦點(diǎn)坐標(biāo)F(1,0),準(zhǔn)線(xiàn)方程:x=-1
設(shè)A(x1,y1),B(x2,y2),C(x3,y3
∵點(diǎn)F是△ABC重心,
∴x1+x2+x3=3,
∵|FA|=x1-(-1)=x1+1,|FB|=x2-(-1)=x2+1,|FC|=x3-(-1)=x3+1
∴|FA|+|FB|+|FC|=x1+1+x2+1+x3+1=(x1+x2+x3)+3=3+3=6
故選:B.
點(diǎn)評(píng):本題重點(diǎn)考查拋物線(xiàn)的簡(jiǎn)單性質(zhì),考查學(xué)生的計(jì)算能力,解題的關(guān)鍵是判斷出x1+x2+x3=3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a>0,b>0)的一個(gè)焦點(diǎn)F到它的一條漸近線(xiàn)距離x滿(mǎn)足a≤x≤3a,則該雙曲線(xiàn)的離心率的取值范圍為( 。
A、(
2,
+∞)
B、(1,
10
C、[2,
10
D、[
2
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一組變量x與y具有相關(guān)關(guān)系,對(duì)應(yīng)值如下表:根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線(xiàn)性回歸方程為
y
=0.5x+1.25,那么表中t的值是( 。
x3456
y3.5t44.5
A、2B、3C、3.25D、3.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知log2a+log2b≥1,則3a+9b的最小值為( 。
A、6B、9C、16D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,a1+a5=1,則S5=( 。
A、
5
2
B、5
C、-
5
2
D、-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)Z1,Z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)分別為A(-2,1),B(a,3).
(1)若|Z1-Z2|=
5
,求a的值.
(2)復(fù)數(shù)z=Z1•Z2對(duì)應(yīng)的點(diǎn)在二、四象限的角平分線(xiàn)上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四棱錐P-ABCD中,PD⊥CD,E為PC中點(diǎn),底面ABCD是直角梯形,
AB∥CD,∠ADC=90°,AB=PD=1,CD=2.
(Ⅰ)求異面直線(xiàn)PC與AB所成角的余弦值:
(Ⅱ)求證:BE∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)關(guān)于x的不等式|x-1|≤a-x.
(1)若a=2,解上述不等式;
(2)若上述的不等式有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

i+i2+…+i2013=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案