4.已知△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,且滿足$\frac{(sinA-sinC)(a+c)}=sinA-sinB$,則角C=$\frac{π}{3}$.

分析 由條件利用正弦定理和余弦定理求得cosC=$\frac{1}{2}$,可得角C的值.

解答 解:△ABC中,∵$\frac{(sinA-sinC)(a+c)}=sinA-sinB$,∴$\frac{(a-c)(a+c)}$=a-b,
∴a2+b2-c2=ab,∴cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=$\frac{1}{2}$,∴C=$\frac{π}{3}$,
故答案為:$\frac{π}{3}$.

點(diǎn)評 本題主要考查正弦定理和余弦定理的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}•{bn}滿足a1=2,an-1=an(an+1-1),bn=an-1.
(I)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{$\frac{{2}^{n}}{_{n}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.等比數(shù)列{an}中,an>0,a1=256,S3=448,Tn為數(shù)列{an}的前n項(xiàng)乘積,則T17=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1=2,S5=30,數(shù)列{bn}的前n項(xiàng)和為Tn,且Tn=2n-1.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=(-1)n(anbn+lnSn),求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知復(fù)數(shù)z=$\frac{2}{1+i}$+i,則z的共軛復(fù)數(shù)為( 。
A.1+iB.1+2iC.1D.2+3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一條漸近線方程是3x+2y=0,則它的離心率等于( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{5}}}{3}$C.$\frac{{\sqrt{13}}}{2}$D.$\frac{{\sqrt{13}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在數(shù)列{an}中,an+1-an=3,a2=4,Sn為{an}的前n項(xiàng)和,則S5=(  )
A.30B.35C.45D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某單位有840名職工,現(xiàn)采用系統(tǒng)抽樣抽取42人做問卷調(diào)查,將840人按1,2,…,840隨機(jī)編號,則抽取的42人中,編號落入?yún)^(qū)間[61,140]的人數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.無窮等比數(shù)列{an}的首項(xiàng)為2,公比為$\frac{1}{3}$,則{an}的各項(xiàng)的和為3.

查看答案和解析>>

同步練習(xí)冊答案