3.已知函數(shù)y=f(x)的圖象是由y=sin2x向右平移$\frac{π}{12}$得到,則下列結(jié)論正確的是(  )
A.f(0)<f(2)<f(4)B.f(2)<f(0)<f(4)C.f(0)<f(4)<f(2)D.f(4)<f(2)<f(0)

分析 由條件利用y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:把y=sin2x向右平移$\frac{π}{12}$得到y(tǒng)=sin2(x-$\frac{π}{12}$)=sin(2x-$\frac{π}{6}$)的圖象,
故f(0)=-$\frac{1}{2}$,f(2)=sin(4-$\frac{π}{6}$),f(4)=sin(8-$\frac{π}{6}$),
故f(0)<f(2)<f(4),
故選:A.

點(diǎn)評(píng) 本題主要考查y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若直線m被兩平行線l1:x+y=0與l2:x+y+$\sqrt{6}$=0所截得的線段的長(zhǎng)為2$\sqrt{3}$,則m的傾斜角可以是
①15°   ②45°  ③60°  ④105°⑤120°    ⑥165°
其中正確答案的序號(hào)是④或⑥.(寫(xiě)出所有正確答案的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)$f(x)=sinx•cos(x-\frac{π}{6})+{cos^2}x-\frac{1}{2}$
(1)求函數(shù)f(x)的最大值,并寫(xiě)出f(x)取最大值x時(shí)的取值集合;
(2)若$f({x_0})=\frac{11}{20},{x_0}∈[\frac{π}{6},\frac{π}{2}]$,求cos2x0的值;
(3)在△ABC中,角A、B、C的對(duì)邊分別為a,b,c,若$f(A)=\frac{1}{2},b+c=3$,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.拋物線$y=\frac{1}{8}{x^2}$上到焦點(diǎn)的距離等于10的點(diǎn)的坐標(biāo)為(8,8)或(-8,8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{|{{{log}_2}x}|,\;0<x≤4}\\{{x^2}-12x+34\;,x>4}\end{array}}$,若方程f(x)=t,(t∈R)有四個(gè)不同的實(shí)數(shù)根x1,x2,x3,x4,則x1x2x3x4的取值范圍為(32,34).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.將$a={0.5^{0.1}},b={log_4}0.1,c={0.4^{0.1}}$按由大到小的順序排列為a>c>b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.(1)化簡(jiǎn):$\frac{sin(π-α)cos(3π-α)tan(-α-π)tan(α-2π)}{tan(4π-α)sin(5π+a)}$.
(2)若α、β為銳角,且$cos(α+β)=\frac{12}{13}$,$cos(2α+β)=\frac{3}{5}$,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)x,y滿足條件:$\left\{\begin{array}{l}x-y+2≥0\\ 2x+y-5≥0\\ 2x-y-3≤0\end{array}\right.$,則z=3x+2y的最大值為(  )
A.8B.9C.28D.29

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.過(guò)拋物線y2=4x的焦點(diǎn)的直線與拋物線交于A,B兩個(gè)不同的點(diǎn),當(dāng)|AB|=6時(shí),△OAB(O為坐標(biāo)原點(diǎn))的面積是(  )
A.$\sqrt{10}$B.$\sqrt{6}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案