【題目】某高級中學在今年五一期間給校內(nèi)所有教室安裝了同一型號的空調(diào),關于這批空調(diào)的使用年限單位:年和所支出的維護費用單位:千元廠家提供的統(tǒng)計資料如表:

x

2

4

5

6

8

y

30

40

60

50

70

xy之間是線性相關關系,請求出維護費用y關于x的線性回歸直線方程;

若規(guī)定當維護費用y超過千元時,該批空調(diào)必須報度,試根據(jù)的結(jié)論求該批空調(diào)使用年限的最大值結(jié)果取整數(shù)參考公式:,

【答案】(1);(2)10

【解析】

由題意首先求得樣本中心點,然后求解回歸方程即可;
利用的結(jié)論結(jié)合題意得到不等式,求解不等式即可求得最終結(jié)果

由題意可得:,,

則:

,

回歸方程為:

當維護費用y超過萬元時,

即:,解得:

則從第11年開始這批空調(diào)必須報廢,該批空調(diào)使用年限的最大值為10年.

答:該批空調(diào)使用年限的最大值為10

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某商品在近30天內(nèi)每件的銷售價格(單位:元)與銷售時間(單位:天)的函數(shù)關系為,且該商品的日銷售量Q(單位:件)與銷售時間(單位:天)的函數(shù)關系為,則這種商品的日銷售量金額最大的一天是30天中的第__________天.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,過點的直線的參數(shù)方程為為參數(shù), 的傾斜角).以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系.曲線,曲線.

(1)若直線與有且僅有一個公共點求直線的極坐標方程;

(2)若直線與曲線交于不同兩點,交于不同兩點,這四點從左到右依次為,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】供電部門對某社區(qū)1000位居民2017年12月份人均用電情況進行統(tǒng)計后,按人均用電量分為五組,整理得到如下的頻率分布直方圖,則下列說法錯誤的是( )

A. 12月份人均用電量人數(shù)最多的一組有400人

B. 12月份人均用電量不低于20度的有500人

C. 12月份人均用電量為25度

D. 在這1000位居民中任選1位協(xié)助收費,選到的居民用電量在—組的概率為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ex+sinx,g(x)=ax,F(xiàn)(x)=f(x)﹣g(x).
(1)若x=0是F(x)的極值點,求a的值;
(2)當 a=1時,設P(x1 , f(x1)),Q(x2 , g(x2))(x1>0,x2>0),且PQ∥x軸,求P、Q兩點間的最短距離;
(3)若x≥0時,函數(shù)y=F(x)的圖象恒在y=F(﹣x)的圖象上方,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)的發(fā)展,移動支付又稱手機支付逐漸深入人民群眾的生活某學校興趣小組為了了解移動支付在人民群眾中的熟知度,對歲的人群隨機抽樣調(diào)查,調(diào)查的問題是你會使用移動支付嗎?其中,回答的共有50個人,把這50個人按照年齡分成5組,并繪制出頻率分布表部分數(shù)據(jù)模糊不清如表:

分組

頻數(shù)

頻率

1

10

2

3

15

4

5

2

合計

50

表中處的數(shù)據(jù)分別是多少?

從第1組,第3組,第4組中用分層抽樣的方法抽取6人,求每組抽取的人數(shù).

抽取的6人中再隨機抽取2人,求所抽取的2人來自同一個組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線C: =1(a>0,b>0)兩條漸近線l1 , l2與拋物線y2=﹣4x的準線1圍成區(qū)域Ω,對于區(qū)域Ω(包含邊界),對于區(qū)域Ω內(nèi)任意一點(x,y),若 的最大值小于0,則雙曲線C的離心率e的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的離心率是,過點的動直線與橢圓相交于兩點當直線軸平行時,直線被橢圓截得的線段長為.

(Ⅰ)求橢圓的方程;

(Ⅱ)在軸上是否存在異于點的定點,使得直線變化時,總有若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=|x+1|+|x﹣3|
(1)求函數(shù)f(x)的最小值;
(2)若{x|f(x)≤t2﹣3t}∩{x|﹣2≤x≤0}≠.求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案