函數(shù)y=2x-
1
x
的單調(diào)遞增區(qū)間是
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)導(dǎo)數(shù)判斷函數(shù)的單調(diào)區(qū)間即可,注意自變量的取值范圍,
解答: 解:∵f(x)=2x-
1
x
,
∴x≠0,
∴f′(x)=2+
1
x2
>0恒成立,
∴函數(shù)f(x)在(-∞,0),(0+∞)上單調(diào)遞增.
故答案為:(-∞,0),(0+∞)
點(diǎn)評(píng):本題主要考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)某種產(chǎn)品的月產(chǎn)量y與月份x之間滿足關(guān)系y=a•0.5x+b.現(xiàn)已知該廠今年1月份、2月份生產(chǎn)該產(chǎn)品分別為1萬(wàn)件、1.5萬(wàn)件.則此工廠3月份該產(chǎn)品的產(chǎn)量為
 
萬(wàn)件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí)f′(x)g(x)+f(x)g′(x)>0,且f(-1)=0,則不等式f(x)g(x)<0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=lg(64-x2)+
2sinx-1
的定義域?yàn)?div id="fj7nhrn" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x2+
b
2
(ex-e-x),且f(a)=b,則f(-a)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)原點(diǎn)且經(jīng)過(guò)直線I1:3x+4y-2=0,I2:2x+y+2=0交點(diǎn)的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:0<x<1,則函數(shù)y=x(3-2x)的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)R表示一個(gè)正方形區(qū)域,n是一個(gè)不小于4的整數(shù).點(diǎn)X位于R的內(nèi)部(不包括邊界),如果從點(diǎn)X可引出n條射線將R劃分為n個(gè)面積相等的三角形,則稱點(diǎn)X是一個(gè)“n維分點(diǎn)”.由區(qū)域R內(nèi)部的“100維分點(diǎn)”構(gòu)成集合A,“60維分點(diǎn)”構(gòu)成集合B,則集合{x|x∈A且x∉B}中的元素個(gè)數(shù)是( 。
A、1560B、2320
C、2480D、2500

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}:1,-
5
8
,
7
15
,-
9
24
,…的一個(gè)通項(xiàng)公式是( 。
A、an=(-1)n+1
2n-1
n2+n
(n∈N+
B、an=(-1)n-1
2n-1
n2+3n
(n∈N+
C、an=(-1)n+1
2n-1
n2+2n
(n∈N+
D、an=(-1)n-1
2n+1
n2+2n
(n∈N+

查看答案和解析>>

同步練習(xí)冊(cè)答案