18.函數(shù)y=2+log2(x2+3)(x≥1)的值域?yàn)閇4,+∞).

分析 令u(x)=x2+3,當(dāng)x≥1時(shí),u(x)≥u(1)=4.可得log2u(x)≥log24.即可得出.

解答 解:令u(x)=x2+3,當(dāng)x≥1時(shí),u(x)≥u(1)=4.
∴l(xiāng)og2u(x)≥log24=2.
∴y≥2+2=4.
∴函數(shù)y=2+log2(x2+3)(x≥1)的值域?yàn)閇4,+∞).
故答案為:[4,+∞).

點(diǎn)評(píng) 本題考查了二次函數(shù)的單調(diào)性、對(duì)數(shù)函數(shù)的單調(diào)性、復(fù)合函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=-2x${\;}^{\frac{1}{2}}$
(1)求f(x)的定義域
(2)證明f(x)在定義域內(nèi)是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知an=logn(n+1),化簡(jiǎn)$\frac{1}{lo{g}_{{a}_{2}}10}$+$\frac{1}{lo{g}_{{a}_{3}}10}$+…+$\frac{1}{lo{g}_{{a}_{127}}10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)a,b.c都是實(shí)數(shù),“a+b+c=0”是“x=1是方程ax2+bx+c=0的一個(gè)根”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題p:?x∈R,x-1>lnx,命題q:函數(shù)y=ax+a-x(a>1)在R上為減函數(shù),則 ( 。
A.命題p∨q是假命題B.命題p∧q是真命題
C.命題p∧(-q)是真命題D.命題p∨(-q)是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在平面直角坐標(biāo)系xOy中,過點(diǎn)M(1,0)的直線x+y-c=0與圓x2+y2=5交于A,B兩點(diǎn),則$\frac{AM}{MB}$=$\frac{1}{2}$或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=x2-ax與y=log|a|x(a≠0,|a|≠1|)在同一直角坐標(biāo)系中的圖象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知等式$sin(θ+\frac{π}{6})=1-{log_{\frac{1}{2}}}x$,則x的取值范圍是(  )
A.[1,4]B.$[{\frac{1}{4},1}]$C.[2,4]D.$[{\frac{1}{4},4}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)$f(x)=\frac{1}{{\sqrt{3-x}}}$的定義域?yàn)椋?∞,3).

查看答案和解析>>

同步練習(xí)冊(cè)答案