分析 (Ⅰ)設(shè)BD中點(diǎn)為O,連接OC,OE,則CO⊥BD,CE⊥BD,于是BD⊥平面EOC,從而EO⊥BD,即OE是BD的垂直平分線(xiàn);
(Ⅱ)取AB中點(diǎn)N,連接MN,DN,MN,易證MN∥平面BEC,DN∥平面BEC,由面面平行的判定定理即可證得平面DMN∥平面BEC,又DM?平面DMN,于是DM∥平面BEC;
解答 證明:(Ⅰ)取BD的中點(diǎn)O,連結(jié)CO,EO,
∵△BCD是等腰三角形,∠BCD=120°,∴CB=CD,∴CO⊥BD,
又∵EC⊥BD,EC∩CO=C,∴BD⊥平面EOC,∴EO⊥BD,
在△BDE中,由于O為BD的中點(diǎn),所以BE=DE;
所以△BDE是等腰三角形;
(Ⅱ)取AB中點(diǎn)N,連接MN,DN,
∵M(jìn)是AE的中點(diǎn),
∴MN∥BE,又MN?平面BEC,BE?平面BEC,
∴MN∥平面BEC,
∵△ABD是等邊三角形,
∴∠BDN=30°,又CB=CD,∠BCD=120°,
∴∠CBD=30°,
∴ND∥BC,
又DN?平面BEC,BC?平面BEC,
∴DN∥平面BEC,又MN∩DN=N,故平面DMN∥平面BEC,又DM?平面DMN,
∴DM∥平面BEC.
點(diǎn)評(píng) 本題考查直線(xiàn)與平面平行的判定,考查線(xiàn)面垂直的判定定理與面面平行的判定定理的應(yīng)用,著重考查分析推理能力與表達(dá)、運(yùn)算能力,屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 不是定值 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x±2y=0 | B. | 2x±y=0 | C. | $\sqrt{3}$x±y=0 | D. | x$±\sqrt{3}$y=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|x<-$\frac{1}{3}$或x>$\frac{1}{2}$} | B. | {x|-3<x<2} | C. | {x|-$\frac{1}{3}$<x<$\frac{1}{2}$} | D. | {x|x<-3或x>2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com