16.一個(gè)數(shù)無(wú)論從左邊念,還是從右邊念都是同一個(gè)數(shù),則這個(gè)數(shù)稱(chēng)為“回文數(shù)”,如11、22是兩位“回文數(shù)”,111、101是三位“回文數(shù)”,則5位“回文數(shù)”的個(gè)數(shù)有900個(gè).

分析 利用回文數(shù)的對(duì)稱(chēng)性,判斷中間數(shù),十位數(shù)以及個(gè)位數(shù)的可能值,利用分步計(jì)數(shù)原理求解即可.

解答 解:一個(gè)數(shù)無(wú)論從左邊念,還是從右邊念都是同一個(gè)數(shù),則這個(gè)數(shù)稱(chēng)為“回文數(shù)”,如11、22是兩位“回文數(shù)”,111、101是三位“回文數(shù)”,則5位“回文數(shù)”的個(gè)位數(shù)有9種選擇方法,十位數(shù)和百位數(shù)都有10中方法,有分步乘法計(jì)數(shù)原理可知:5位“回文數(shù)”的個(gè)數(shù)有:9×10×10=900.
故答案為:900.

點(diǎn)評(píng) 本題考查計(jì)數(shù)原理的應(yīng)用,關(guān)鍵是理解回文數(shù)的定義與特點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)為R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=$\frac{1}{2}$(|x+cosa|+|x+2cosa|+3cosa),若對(duì)任意實(shí)數(shù)x,都有f(x-3)≤f(x)恒成立,則a的取值范圍是[-$\frac{2π}{3}$+2kπ,2kπ+$\frac{2π}{3}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)單位向量$\overrightarrow{e_1},\overrightarrow{e_2}$的夾角為120°,$\overrightarrow a=2\overrightarrow{e_1}-\overrightarrow{e_2}$,則|$\overrightarrow a|$=( 。
A.3B.$\sqrt{3}$C.7D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知向量$\overrightarrow{m}$=(2cosωx,-1),$\overrightarrow{n}$=(sinωx-cosωx,2)(ω>0),函數(shù)f(x)=$\overrightarrow m•\overrightarrow n+3$,若函數(shù)f(x)的圖象的兩個(gè)相鄰對(duì)稱(chēng)中心的距離為$\frac{π}{2}$.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)將函數(shù)f(x)的圖象先向左平移$\frac{π}{4}$個(gè)單位,然后縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的$\frac{1}{2}$倍,得到函數(shù)g(x)的圖象,當(dāng)$x∈[\frac{π}{6},\frac{π}{2}]$時(shí),求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)P(x1,y1)是圓O1:x2+y2=9上的點(diǎn),圓O2的圓心為Q(a,b),半徑為1,則(a-x12+(b-y12=1是圓O1與圓O2相切的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=a2+5a1,a7=2,則a5=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合M={-1,0,1,2,3},N={-2,0},則下列結(jié)論正確的是( 。
A.N⊆MB.M∩N=NC.M∪N=MD.M∩N={0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)函數(shù)f(x),g(x)的定義域?yàn)镽,且f(x)是奇函數(shù),g(x)是偶函數(shù),設(shè)h(x)=|f(x-1)|+g(x-1),則下列結(jié)論中正確的是( 。
A.h(x)關(guān)于(1,0)對(duì)稱(chēng)B.h(x)關(guān)于(-1,0)對(duì)稱(chēng)C.h(x)關(guān)于x=1對(duì)稱(chēng)D.h(x)關(guān)于x=-1對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn)分別為F1、F2,點(diǎn)P(a,b)滿(mǎn)足|F1F2|=|PF2|,設(shè)直線(xiàn)PF2與橢圓交于M、N兩點(diǎn),若|MN|=16,則橢圓的方程為(  )
A.$\frac{x^2}{144}+\frac{y^2}{108}=1$B.$\frac{x^2}{100}+\frac{y^2}{75}=1$C.$\frac{x^2}{36}+\frac{y^2}{27}=1$D.$\frac{x^2}{16}+\frac{y^2}{12}=1$

查看答案和解析>>

同步練習(xí)冊(cè)答案