已知非負(fù)實數(shù)x,y滿足
x+y≤4
x-y≤1
,若實數(shù)k滿足y+1=k(x+1),則( 。
A、k的最小值為1,k的最大值為
5
7
B、k的最小值為
1
2
,k的最大值為
5
7
C、k的最小值為
1
2
,k的最大值為5
D、k的最小值為
5
7
,k的最大值為
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,y+1=k(x+1)過定點(-1,-1),利用數(shù)形結(jié)合以及直線斜率的意義進(jìn)行求解即可.
解答: 解:y+1=k(x+1)過定點(-1,-1),
作出不等式組對應(yīng)的平面區(qū)域如圖:
則由圖象知MC的斜率最小,MA的斜率最大,
其中A(0,4),C(1,0),
則MA的斜率k=
-1-4
-1-0
=5,
MC的斜率k=
-1-0
-1-1
=
1
2
,
故k的最小值為
1
2
,k的最大值為5,
故選:C
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用直線斜率的公式結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為2,焦點到漸近線的距離為
3
,則此雙曲線的焦距等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某幾何體的直觀圖與三視圖的側(cè)視圖、俯視圖.在直觀圖中,2BN=AE,M是ND的中點.側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.
(1)在答題紙上的虛線框內(nèi)畫出該幾何體的正視圖,并標(biāo)上數(shù)據(jù);
(2)求證:EM∥平面ABC;
(3)試問在邊BC上是否存在點G,使GN⊥平面NED.若存在,確定點G的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(1-x)5=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,則a1 十a(chǎn)2 十a(chǎn)3十a(chǎn)4十a(chǎn)5的值等于(  )
A、-31B、0C、1D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲乙兩名同學(xué)參加某項技能比賽,7名裁判給兩人打出的分?jǐn)?shù)如下莖葉圖所示,依此判斷(  )
A、甲成績穩(wěn)定且平均成績較高
B、乙成績穩(wěn)定且平均成績較高
C、甲成績穩(wěn)定,乙平均成績較高
D、乙成績穩(wěn)定,甲平均成績較高

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>1,b>1,若ab=e2,則s=blna-2e的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2008年5月12日在四川汶川地區(qū)發(fā)生了8.0級強烈地震,全國人民萬眾一心,抗震救災(zāi),某市計劃用37輛汽車往災(zāi)區(qū)運送一批救災(zāi)物資,假設(shè)汽車以v km/h的速度勻速直達(dá)災(zāi)區(qū),已知該市到災(zāi)區(qū)公路路線長400 km,為了安全起見,兩輛汽車的間距不得小于(
v
10
2km,那么這批物資全部到達(dá)災(zāi)區(qū)的最少時間是多少(精確到1h,車身長不計)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,滿足(1-q)Sn+qan=1,且q(q-1)≠0.
(Ⅰ)求{an}的通項公式;
(Ⅱ)若S3,S9,S6成等差數(shù)列,求證:a2,a8,a5成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的實數(shù)x1≠x2(x1>0,x2>0)時,有
f(x1)-f(x2)
x1-x2
>0成立,如果實數(shù)t滿足f(lnt)-f(1)≤f(1)-f(ln
1
t
),那么t的取值范圍是( 。
A、(0,e]
B、[0,
1
e
]
C、[1,e]
D、[
1
e
,e]

查看答案和解析>>

同步練習(xí)冊答案