13.已知曲線C:y=3x4-2x3-9x2+4
①求曲線C上橫坐標(biāo)為1的點(diǎn)的切線方程;
②第①小題中切線與曲線C是否還有其它公共點(diǎn).

分析 ①根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)在x=1處的導(dǎo)數(shù),從而得到切線的斜率,再利用點(diǎn)斜式方程寫出切線方程即可;
②由①得出的切線方程與y=3x4-2x3-9x2+4組成方程組,解得兩組解,從而得出切線與曲線C還有其他的公共點(diǎn).

解答 解:①y'=12x3-6x2-18x,
可得y'|x=1=12×13-6×12-18×1=-12,
而切點(diǎn)的坐標(biāo)為(1,-4),
∴曲線y=3x4-2x3-9x2+4在x=1的處的切線方程為:y+4=-12(x-1),
即12x+y-8=0;
②由方程組:$\left\{\begin{array}{l}{12x+y-8=0}\\{y=3{x}^{4}-2{x}^{3}-9{x}^{2}+4}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=1}\\{y=-4}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=32}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{2}{3}}\\{y=0}\end{array}\right.$,
故切線與曲線C還有其他的公共點(diǎn):(-2,32),($\frac{2}{3}$,0).

點(diǎn)評(píng) 本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,考查運(yùn)算求解能力和方程思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的離心率為$\sqrt{2}$,則其漸近線方程為(  )
A.y=±xB.$y=±\sqrt{2}x$C.$y=±\frac{{\sqrt{2}}}{2}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=loga(2+x)-loga(2-x)(0<a<1).
(1)判斷f(x)的奇偶性;
(2)解不等式f(x)≥loga(3x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)函數(shù)f(x)=sin(ωx+$\frac{π}{6}$)-ω(ω>0)的導(dǎo)函數(shù)f′(x)的最大值為3,則f(x)的最大值為( 。
A.0B.1C.-2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若對(duì)任意實(shí)數(shù)x∈[-1,1],不等式x2+mx+3m<0恒成立,則實(shí)數(shù)m的取值范圍m$<-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x2+xsinx+cosx,且曲線y=f(x)在點(diǎn)(a,f(a))處與直線y=b相切,試求函數(shù)g(x)=bx2+2x+a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知曲線xy=1,過其上任意一點(diǎn)P作切線與x軸、y軸分別交于Q、R.求證:
(1)P平分QR;
(2)△OQR的面積是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.給出的四個(gè)命題,其中正確的是( 。
A.?x0∈R,x${\;}_{0}^{2}$+2x0+2=0B.?x∈N,x3>c2
C.若x>1,則x2>1D.若a>b,則a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,且bn=1-2Sn;將函數(shù)y=sinx在區(qū)間(0,+∞)內(nèi)的全部零點(diǎn)按從小到大的順序排成數(shù)列{an}.
(1)求{bn}與{an}的通項(xiàng)公式;
(2)設(shè)cn=an•bn(n∈N*),Tn為數(shù)列{cn}的前n項(xiàng)和,若a2-2a>4Tn恒成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案