2.給出的四個(gè)命題,其中正確的是(  )
A.?x0∈R,x${\;}_{0}^{2}$+2x0+2=0B.?x∈N,x3>c2
C.若x>1,則x2>1D.若a>b,則a2>b2

分析 分別判斷選項(xiàng),即可得到答案.

解答 解:對(duì)于A,△=4-4×2<0,方程無(wú)解,故A不正確,
對(duì)于B,當(dāng)x=1,2時(shí)即不成立,故B不正確,
對(duì)于C,若x>1,則x2>1,正確,故C正確,
對(duì)于D,當(dāng)a=1,b=-2時(shí)不成立,故D不正確,
故選:C.

點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若動(dòng)圓C過(guò)定點(diǎn)A(4,0),且在y軸上截得弦MN的長(zhǎng)為8,則動(dòng)圓圓心C的軌跡方程是( 。
A.x2=8yB.x2=8y(x≠0)C.y2=8xD.y2=8x(x≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知曲線C:y=3x4-2x3-9x2+4
①求曲線C上橫坐標(biāo)為1的點(diǎn)的切線方程;
②第①小題中切線與曲線C是否還有其它公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若f(x)=x-elnx,0<a<e<b,則下列說(shuō)法一定正確的是(  )
A.f(a)<f(b)B.f(a)>f(b)C.f(a)>f(e)D.f(e)>f(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.陽(yáng)澄湖大閘蟹的上市規(guī)格為:特級(jí)雄蟹≥200g,雄蟹≥150g,一級(jí)雄蟹≥150g,雌蟹≥125g;二級(jí)雄蟹≥125g,雌蟹≥100g.現(xiàn)從某批上市的大閘蟹中隨機(jī)抽取100只,得到的數(shù)據(jù)如下:
 雄蟹雌蟹 
 等級(jí) 特級(jí)一級(jí) 二級(jí) 特級(jí) 一級(jí) 二級(jí) 
 只數(shù) 30 a10 20 10 b
(1)根據(jù)雌雄按分層抽樣的方法從這100只大閘蟹中抽取20只,若雌蟹有8只,求a,b的值;
(2)按樣本估計(jì)總體的方法從這批上市的大閘蟹中有放回地隨機(jī)抽取3只,記特級(jí)雄蟹的只數(shù)為X,求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)a為實(shí)數(shù),給出命題p:關(guān)于x的不等式($\frac{1}{2}$)|x-1|≥a的解集為Ф,命題q:函數(shù)f(x)=$\sqrt{a{x}^{2}+ax+2}$的定義域?yàn)镽,若命題“p∨q”為真,“p∧q為假”,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)不等式f(x)≥0的解集為[1,2],不等式 g(x)≥0的解集為∅,則不等式$\frac{f(x)}{g(x)}$>0的解集是(-∞,1)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.以下五個(gè)關(guān)于圓錐曲線的命題中:
①雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$與橢圓$\frac{x^2}{49}+\frac{y^2}{24}=1$有相同的焦點(diǎn);
②以拋物線的焦點(diǎn)弦(過(guò)焦點(diǎn)的直線截拋物線所得的線段)為直徑的圓與拋物線的準(zhǔn)線是相切的.
③設(shè)A、B為兩個(gè)定點(diǎn),k為常數(shù),若|PA|-|PB|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線;
④過(guò)拋物線y2=4x的焦點(diǎn)作直線與拋物線相交于A、B兩點(diǎn),則使它們的橫坐標(biāo)之和等于5的直線有且只有兩條.
⑤過(guò)定圓C上一定點(diǎn)A作圓的動(dòng)弦AB,O為原點(diǎn),若$\overrightarrow{OP}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$,則動(dòng)點(diǎn)P的軌跡為橢圓
其中真命題的序號(hào)為①②④(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知集合,B={x|x2-(a+2)x+2a=0},a∈R,A={x|a-2<x<a+2}
(Ⅰ)若a=0,求A∪B
(Ⅱ)若∁RA∩B≠∅,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案