Processing math: 100%
5.已知曲線xy=1,過(guò)其上任意一點(diǎn)P作切線與x軸、y軸分別交于Q、R.求證:
(1)P平分QR;
(2)△OQR的面積是定值.

分析 (1)設(shè)P(m,1m),求出函數(shù)的導(dǎo)數(shù),可得切線的斜率,運(yùn)用點(diǎn)斜式方程求得切線的方程,分別令x=0,y=0,可得Q,R的坐標(biāo),再由中點(diǎn)坐標(biāo)公式即可得證;
(2)運(yùn)用三角形的面積公式可得S=12|OQ|•|OR|,計(jì)算即可得證.

解答 證明:(1)設(shè)P(m,1m),由y=1x可得y′=-1x2,
即有P點(diǎn)出的切線的斜率為-1m2
切線的方程為y-1m=-1m2(x-m),
由x=0,可得y=2m;y=0可得x=2m.
即有Q(2m,0),R(0,2m),
則P為QR的中點(diǎn),即P平分QR;
(2)△OQR的面積是S=12|OQ|•|OR|
=12•2|m|•2|m|=2為定值.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,注意運(yùn)用導(dǎo)數(shù)的幾何意義和直線的方程,考查中點(diǎn)坐標(biāo)公式和三角形的面積計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖所示,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=6.O為AC與BD的交點(diǎn),E為棱PB上一點(diǎn)
(1)證明:平面EAC⊥平面PBD;
(2)若三棱錐P-EAD的體積為22,求證:PD∥平面EAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=x2+xsinx+cosx+1
(Ⅰ)若曲線y=f(x)在點(diǎn)(a,f(a))處的切線是y=b,求a與b的值;
(Ⅱ)若曲線y=f(x)與直線y=b有兩個(gè)不同交點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知曲線C:y=3x4-2x3-9x2+4
①求曲線C上橫坐標(biāo)為1的點(diǎn)的切線方程;
②第①小題中切線與曲線C是否還有其它公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列命題中,說(shuō)法正確的是(  )
A.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
B.“0<x<12”是“x(1-2x)>0”的必要不充分條件
C.命題“?x0∈R,使得x02+x0+1<0”的否定是:“?x∈R,均有x2+x+1>0”
D.命題“在△ABC中,若A>B,則sinA>sinB”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若f(x)=x-elnx,0<a<e<b,則下列說(shuō)法一定正確的是( �。�
A.f(a)<f(b)B.f(a)>f(b)C.f(a)>f(e)D.f(e)>f(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.陽(yáng)澄湖大閘蟹的上市規(guī)格為:特級(jí)雄蟹≥200g,雄蟹≥150g,一級(jí)雄蟹≥150g,雌蟹≥125g;二級(jí)雄蟹≥125g,雌蟹≥100g.現(xiàn)從某批上市的大閘蟹中隨機(jī)抽取100只,得到的數(shù)據(jù)如下:
 雄蟹雌蟹 
 等級(jí) 特級(jí)一級(jí) 二級(jí) 特級(jí) 一級(jí) 二級(jí) 
 只數(shù) 30 a10 20 10 b
(1)根據(jù)雌雄按分層抽樣的方法從這100只大閘蟹中抽取20只,若雌蟹有8只,求a,b的值;
(2)按樣本估計(jì)總體的方法從這批上市的大閘蟹中有放回地隨機(jī)抽取3只,記特級(jí)雄蟹的只數(shù)為X,求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)不等式f(x)≥0的解集為[1,2],不等式 g(x)≥0的解集為∅,則不等式fxgx>0的解集是(-∞,1)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知集合A={(x,y|x2+y23>1},B={(x,y)|y-x>2},則“點(diǎn)P∈A”是“點(diǎn)P∈B”的必要不充分條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案