已知函數(shù)f(x)是R上的增函數(shù),A(0,-1),B(3,1)是其圖象上的兩點,那么f(x+1)<1的解集的補集是( 。
A、(-1,2)
B、(1,4)
C、[2,+∞)
D、[4,+∞)
考點:函數(shù)單調性的性質
專題:計算題,函數(shù)的性質及應用
分析:由于f(3)=1,利用函數(shù)的單調性直接將f(x+1)<1轉化為x+1<3,解出它的解集,再求其補集即可
解答: 解:函數(shù)f(x)是R上的增函數(shù),A(0,-1),B(3,1)是其圖象上的兩點
故f(x+1)<1可變?yōu)閒(x+1)<f(3)
由于函數(shù)是增函數(shù),故有x+1<3,解得x<2
故f(x+1)<1的解集的補集是[2,+∞)
故選C
點評:本題考查利用函數(shù)的單調性解不等式及補集的運算,屬于基本題,較易
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

將函數(shù)y=sin2x的圖象向左平移
π
3
個單位,再向上平移1個單位,得到的函數(shù)為( 。
A、y=sin(2x-
π
3
)+1
B、y=sin(2x+
π
3
)+1
C、y=sin(2x-
3
)+1
D、y=sin(2x+
3
)+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線x2-y2=2的漸近線方程為( 。
A、y=±x
B、y=±
2
x
C、y=±2x
D、y=±
1
2
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)對任意的x∈R滿足2xf′(x)-2xf(x)ln2>0(其中f′(x)是函數(shù)f(x)的導函數(shù)),則下列不等式成立的是( 。
A、2f(-2)<f(-1)
B、2f(1)>f(2)
C、4f(-2)>f(0)
D、2f(0)>f(1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列語句不是命題的是( 。
A、新津中學是一所國家級示范校
B、如果這道題做不好,那么這次考試成績不理想
C、?x0∈R,使得lnx0<0
D、走出去!

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡式子:
lg5•lg8000+(lg2
3
)2
lg600-
1
2
lg0.036-
1
2
lg0.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P是曲線y=2x2-1上的動點,定點A(0,-1),且點P不同于點A,若M點滿足
PM
=2
MA
,求點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:函數(shù)f(x)=x3+x在R上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C所對的邊,且
a
cosA
=
b
2cosB
=
c
3cosC

(Ⅰ)求角A的大。
(Ⅱ)若△ABC的面積為3,求a的值.

查看答案和解析>>

同步練習冊答案